算法交易起源于上世纪中叶的配对交易。
历史上最早使用算法交易的例子可以追溯到1949年。对冲基金之父阿尔弗雷德·琼斯,利用空对多3:7的比例进行配对交易,在1955年到1964年间,综合回报率高达28%。到了上世纪60年代早期,投资者开始利用计算机通过分析股票的周线和月线来预测价格运动方向。
配对交易逐渐成熟,发展成后来的算法交易。随后算法交易策略慢慢在华尔街流传开来并被广泛使用,同时也带来了非常可观的盈利。
市场之所以青睐算法交易,其原因在于其能够快速有效地降低交易成本,控制市场冲击成本和具有较高的执行概率。除此之外,它还能提供隐藏交易意图等传统交易方法不具有的交易方式。
今天就来说说这其中的成本驱动型算法交易吧!

成本驱动型算法的主要目的是降低总体交易成本,除了佣金和价差之外,冲击成本和时机风险等隐性成本都是成本的重要组成部分。虽然将大订单进行分割并将其分散到相当长的一段时间内进行交易可以最小化市场冲击,然而这样做会把订单暴露在更大的时机风险下,对波动性大的资产尤其如此。因此,成本驱动型算法也需要同时降低时机成本。
过于主动的交易会导致相当大的市场冲击,而过于被动的交易会引起时机风险。 为了最小化总的交易成本,我们需要在冲击成本和时机风险这两者之间寻找一个平衡点。为了找到这样一个平衡点需要考虑到投资者的风险厌恶程度。早期的成本驱动型算法是由冲击驱动算法吸收了时机风险等要素演化而来的,现在成本驱动型算法越来越多地使用复杂市场模型,去预测潜在的交易成本和决定指令的最优交易策略,主要的类型包括:

一、执行落差算法
执行落差算法代表了纯粹的成本驱动型算法。它试图最小化平均交易价格和反映投资者决定价格的分配基准之间的落差。适应性落差算法是执行落差的一个机会导向型的版本,一般来说对价格更加敏感。
执行落差指投资者决定交易的价格与实际实现的平均执行价格之间的差额。投资者决定的价格相当于算法的参考基准,一般用指令到达交易商时的中间价格作为替代。而执行落差算法的目的是实现一个能够最小化缺口的平均执行价格。实现这类算法的关键就是在市场影响和时机风险这两者之间寻找一个平衡点。通常这意味着算法只能在不产生显著市场冲击的时间范围内执行。

二、适应性落差算法
适应性落差是从执行缺口算法中演化而来的新算法。该算法所具有的适应性特点主要体现在对市场价格的适应或反应。价格适应性落差算法实际上是一种更加倾向于机会导向的算法。
一个主动实值策略(AIM) 是指当价格有利时交易更加主动,而当价格变得不利时交易变得被动。对于一个买入指令,有利的价格条件等价于市场价格下降到基准价格以下;而对于卖出指令情况则是相反。因此只有当市场价格显著下降到基准价格以下,主动实值策略的交易率才会上升。而被动实值策略(PIM) 则是相反的,且当价格有利时它会变得更加被动,而当价格不利时它会变得更加主动。因此,交易率只有当市场价格显著地高于基准时,才会上升。

三、收盘算法
收盘价格通常用作盯市,以便计算每日的资产净值和盈亏状况。因此不少机构会把收市价作为一个参考基准。一般来说,在收市前进行交易会增加交易成本,而且交易价格对于指令会变得更加敏感。同时,流动性溢价在收市前也会更明显。
收盘算法(MOC) 的主要问题在于,其基准只有在市场收盘价格确定下来后才能得知。所以,该算法并不能把交易日内的交易进行平均,然后把订单进行简单切割去匹配基准。若执行交易的时间较早,收盘价的波动性会给交易者带来时机风险;若交易时间较晚,则会对市场产生较大的冲击。
现在你都了解了吗~
发布者:股市刺客,转载请注明出处:https://www.95sca.cn/archives/75131
站内所有文章皆来自网络转载或读者投稿,请勿用于商业用途。如有侵权、不妥之处,请联系站长并出示版权证明以便删除。敬请谅解!