量化
-
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例
首先,我们对数据集进行了初步的探索,通过summary(data)命令获取了数据的统计概览,有助于我们理解数据的分布和特性。然而,由于直接展示原始数据表格较为冗长,此处省略具体统计…
-
随机森林填充缺失值、BP神经网络在亚马逊评论、学生成绩分析研究2案例合集
在亚马逊评论分析和学生成绩分析中,BP神经网络能够基于填充后的完整数据,提取出隐藏在数据中的有用信息,进而实现关键词识别、成绩预测等目标。 鉴于此,本文将通过两个R语言案例——亚马…
-
MATLAB中用BP神经网络预测人体脂肪百分比数据
问题:估计脂肪百分比 在这个例子中,我们试图建立一个神经网络来估计一个人的脂肪百分比,这个人由13个物理属性描述。 年龄 体重 身高 颈围 胸围 腹部周长 臀围 大腿周长 膝…
-
R语言神经网络模型预测多元时间序列数据可视化
多元时间序列预测的一个基本假设是,其变量相互依赖。 在本文中,我们专门针对客户的多元时间序列数据设计了神经网络框架,拟合单隐层神经网络,可能存在跳跃层连接。 查看数据 其中Y为因变…
-
Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测
获取时间序列数据 df=pd.read_csv(“C://global.csv”) 探索数据 此表中的数据以累积的形式呈现,为了找出每天的新病例,我们需要减去这些值 df.head…
-
MATLAB用深度学习长短期记忆 (LSTM) 神经网络对智能手机传感器时间序列数据进行分类
要训练深度神经网络对序列数据的每个时间步进行分类,可以使用 _序列对序列 LSTM 网络_。序列_对_序列 LSTM 网络使您能够对序列数据的每个单独时间步进行不同的预测。 此示例…
-
Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析|数据分享
什么是依赖关系? 假设您在观看视频时记得前一个场景,或者在阅读一本书时您知道前一章发生了什么。 传统的神经网络无法做到这一点,这是一个主要缺点。例如,假设您想对电影中每一点发生的事…
-
R语言实现神经网络预测股票实例数据分析可视化
如何构建神经网络? 神经网络包括: 输入层:根据现有数据获取输入的层 隐藏层:使用反向传播优化输入变量权重的层,以提高模型的预测能力 输出层:基于输入和隐藏层的数据输出预测 用神经…
-
R语言逻辑回归、决策树、随机森林、神经网络预测患者心脏病数据混淆矩阵可视化
如果能提前准确预测这些信息,可以为医生提供重要见解,从而能够相应并有效地进行患者治疗。以下演示了对流行的心脏疾病数据库进行的探索性数据分析。除此之外,还使用不同方法(如逻辑回归、随…
-
R语言实现拟合神经网络预测和结果可视化
神经网络并不总是流行,部分原因是它们在某些情况下仍然计算成本高昂,部分原因是与支持向量机(SVM)等简单方法相比,它们似乎没有产生更好的结果。然而,最近神经网络变得流行起来。 在这…
-
Python中利用长短期记忆模型LSTM进行时间序列预测分析 – 预测电力负荷数据
每日数据是通过总计每天提供的15分钟间隔的消耗量来创建的。 LSTM简介 LSTM(或长短期记忆人工神经网络)允许分析具有长期依赖性的有序数据。当涉及到这项任务时,传统的神经网络体…
-
使用自组织映射神经网络(SOM)进行客户细分
SOM由1982年在芬兰的Teuvo Kohonen首次描述,而Kohonen在该领域的工作使他成为世界上被引用最多的芬兰科学家。通常,SOM的可视化是六边形节点的彩色2D图。 S…