量化
-
R语言基于递归神经网络RNN的温度时间序列预测
在本文中,我们将介绍三种提高循环神经网络性能和泛化能力的高级技术。我们演示有关温度预测问题的三个概念,我们使用建筑物屋顶上的传感器的时间数据序列。 概述 在本文中,我们将介绍三种提…
-
R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析
Nelson-Siegel- [Svensson]模型是拟合收益曲线的常用方法。它的优点是其参数的经济可解释性,被银行广泛使用。但它不一定在所有情况下都有效:模型参数有时非常不稳定…
-
Python使用神经网络进行简单文本分类
准备数据集 出于演示目的,我们将使用 20个新闻组 数据集。数据分为20个类别,我们的工作是预测这些类别。如下所示: 通常,对于深度学习,我们将划分训练和测试数据。 导入所需的…
-
R语言实现CNN(卷积神经网络)模型进行回归数据分析
当我们将CNN(卷积神经网络)模型用于训练多维类型的数据(例如图像)时,它们非常有用。我们还可以实现CNN模型进行回归数据分析。我们之前使用Python进行CNN模型回归 ,在本文…
-
Python深度学习TensorFlow Keras心脏病预测神经网络模型评估损失曲线、混淆矩阵可视化
本研究旨在通过安装TensorFlow-GPU的特定版本,并结合其他数据处理和可视化库,为深度学习模型的构建提供一套完整的数据处理流程。 心脏病作为一种严重的健康问题,其早期预测和…
-
PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
数据集是天然气价格(查看文末了解数据获取方式) ,具有以下特征: 日期(从 1997 年到 2020 年)- 为 每天数据 以元计的天然气价格 读取数据并将日期作为索引处理 # 固…
-
Python TensorFlow双向Bi-LSTM长短期记忆神经网络深度学习可视化用户传感器活动数据
WISDM数据集包含了从用户身上佩戴的加速度传感器收集的三轴加速度数据,这些数据被用于识别用户的日常活动,如走路、跑步、跳跃等。通过对这些数据的分析,我们可以为健康监测、人机交互等…
-
Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化
在本文中,你将看到如何使用一个被称为长短时记忆的时间序列模型。LSTM模型很强大,特别是在保留长期记忆方面。在本文中,你将解决以下主题。 理解为什么你需要能够预测股票价格的变动。 …
-
R语言用灰色模型 GM (1,1)、神经网络预测房价数据和可视化
由于房价的长期波动性及预测的复杂性,利用传统的方法很难准确预测房价,而灰色模型 GM (1,1)和神经网络的结合在一定程度上可以很好的解决这个问题。文章首先介绍了 GM (1,1)…
-
Python预测体重变化:决策树、tf神经网络、随机森林、梯度提升树、线性回归可视化分析吸烟与健康调查数据
特别是在医疗健康领域,这些算法的应用极大地提升了我们对疾病预防、诊断及治疗方案的理解与制定能力。本文旨在通过Python中的决策树、神经网络及随机森林等经典机器学习算法,对吸烟、体…
-
Python、R时间卷积神经网络TCN与CNN、RNN预测时间序列3实例附代码数据
通过引入TCN模型,我们尝试帮助客户解决时间序列数据中的复杂依赖关系,以提高预测的准确性。本文首先介绍了TCN的基本原理,随后详细描述了数据预处理、模型构建、训练及评估的整个过程。…
-
Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析
LSTM神经网络架构和原理及其在Python中的预测应用 我将通过以下步骤: 探索性数据分析(EDA) 问题定义(我们要解决什么) 变量识别(我们拥有什么数据) 单变量分析(了解数…