本文以海通证券《选股因子系列研究(十二)——“量”与“价”的结合》的研究方法为模板,试图分析量价相关关系作为因子的效果:
- 将股票在短期内的量价走势分类为量价背离与量价同向,并通过量价相关性来衡量量价走势的背离与同向程度
- 按照量价因子选股的月度多空收益在1%以上,得到了很显著的alpha
- 纯多头组合在六年回测中年化收益达到22.4%,信息比率达到2.22
- 量价因子等权叠加了反转因子后,六年回测年化收益达到26.0%,信息比率达到2.55
2. 量价因子构建
股票交易中,最显然的指标无非价格和成交量,大多经典的技术指标其实都是围绕着价格和成交量来构建,本文中尝试将这两者结合起来构建量价因子。中短周期上,量价走势分类为量价背离与量价同向,并通过量价相关性来衡量量价走势的背离与同向的程度。因此,量价相关性,也就是本文中的量价因子,可以简单定义为:
- 一段时间窗口内,股票收盘价与股票日换手率之间的秩相关系数
本文中的量价相关系数计算,采取的时间窗口为15个交易日
下面给出本文中用来计算量价因子的程序代码
import matplotlib.pyplot as plt
from matplotlib import rc
from matplotlib import dates
rc('mathtext', default='regular')
import seaborn as sns
sns.set_style('white')
import datetime
import numpy as np
import pandas as pd
import time
import scipy.stats as st
from CAL.PyCAL import * # CAL.PyCAL中包含font
def getVolPriceCorrAll(universe, begin, end, window, file_name):
# 计算各股票历史区间window天窗口移动的量价相关系数
# 拿取上海证券交易所日历
cal_dates = DataAPI.TradeCalGet(exchangeCD=u"XSHG", beginDate=begin, endDate=end).sort('calendarDate')
cal_dates = cal_dates[cal_dates['isOpen']==1]
all_dates = cal_dates['calendarDate'].values.tolist() # 工作日列表
print str(window) + ' days Price-Volume-Corr will be calculated for ' + str(len(universe)) + ' stocks:'
count = 0
secs_time = 0
start_time = time.time()
ret_data = pd.DataFrame() # 保存计算出来的收益率数据
ret_data.to_csv(file_name)
N = 10
for i in range(len(universe)/N+1):
sub_univ = universe[i*N:(i+1)*N]
if len(sub_univ) == 0:
continue
data = DataAPI.MktEqudAdjGet(secID=sub_univ, beginDate=begin, endDate=end,
field='secID,tradeDate,turnoverRate,preClosePrice,closePrice') # 拿取数据
for stk in sub_univ: # 对每一只股票分别计算历史window天前望收益率
tmp_ret_data = data[data.secID==stk].sort('tradeDate')
corr_data = range(len(tmp_ret_data))
for i in range(window-1, len(tmp_ret_data)):
x = tmp_ret_data['turnoverRate'].values[i-window+1:i+1]
y = tmp_ret_data['closePrice'].values[i-window+1:i+1]
corr_data[i] = st.spearmanr(x, y)[0]
# 计算前向收益率
tmp_ret_data['corr'] = corr_data
tmp_ret_data = tmp_ret_data[['tradeDate','corr']]
tmp_ret_data.columns = ['tradeDate', stk]
ret_data = pd.read_csv(file_name)
if ret_data.empty:
ret_data = tmp_ret_data
else:
ret_data = ret_data[ret_data.columns[1:]]
ret_data = ret_data.merge(tmp_ret_data, on='tradeDate', how='outer')
ret_data = ret_data.sort('tradeDate')
ret_data.to_csv(file_name)
# 打印进度部分
count += 1
if count > 0 and count % 2 == 0:
finish_time = time.time()
print count*N,
print ' ' + str(np.round((finish_time-start_time) - secs_time, 0)) + ' seconds elapsed.'
secs_time = (finish_time-start_time)
return ret_data
def getBackwardReturnsAll(universe, begin, end, window, file_name):
# 计算各股票历史区间回报率,过去window天的收益率
print str(window) + ' days backward returns will be calculated for ' + str(len(universe)) + ' stocks:'
count = 0
secs_time = 0
start_time = time.time()
N = 50
ret_data = pd.DataFrame()
for stk in universe:
data = DataAPI.MktEqudAdjGet(secID=stk, beginDate=begin, endDate=end,
field='secID,tradeDate,closePrice') # 拿取数据
tmp_ret_data = data.sort('tradeDate')
# 计算历史窗口收益率
tmp_ret_data['forwardReturns'] = tmp_ret_data['closePrice'] / tmp_ret_data['closePrice'].shift(window) - 1.0
tmp_ret_data = tmp_ret_data[['tradeDate','forwardReturns']]
tmp_ret_data.columns = ['tradeDate', stk]
if ret_data.empty:
ret_data = tmp_ret_data
else:
ret_data = ret_data.merge(tmp_ret_data, on='tradeDate', how='outer')
# 打印进度部分
count += 1
if count > 0 and count % N == 0:
finish_time = time.time()
print count,
print ' ' + str(np.round((finish_time-start_time) - secs_time, 0)) + ' seconds elapsed.'
secs_time = (finish_time-start_time)
ret_data.to_csv(file_name)
return ret_data
def getForwardReturnsAll(universe, begin, end, window, file_name):
# 计算各股票历史区间前瞻回报率,未来window天的收益率
print str(window) + ' days forward returns will be calculated for ' + str(len(universe)) + ' stocks:'
count = 0
secs_time = 0
start_time = time.time()
N = 50
ret_data = pd.DataFrame()
for stk in universe:
data = DataAPI.MktEqudAdjGet(secID=stk, beginDate=begin, endDate=end,
field='secID,tradeDate,closePrice') # 拿取数据
tmp_ret_data = data.sort('tradeDate')
# 计算历史窗口前瞻收益率
tmp_ret_data['forwardReturns'] = tmp_ret_data['closePrice'].shift(-window) / tmp_ret_data['closePrice'] - 1.0
tmp_ret_data = tmp_ret_data[['tradeDate','forwardReturns']]
tmp_ret_data.columns = ['tradeDate', stk]
if ret_data.empty:
ret_data = tmp_ret_data
else:
ret_data = ret_data.merge(tmp_ret_data, on='tradeDate', how='outer')
# 打印进度部分
count += 1
if count > 0 and count % N == 0:
finish_time = time.time()
print count,
print ' ' + str(np.round((finish_time-start_time) - secs_time, 0)) + ' seconds elapsed.'
secs_time = (finish_time-start_time)
ret_data.to_csv(file_name)
return ret_data
def getMarketValueAll(universe, begin, end, file_name):
# 获取股票历史每日市值
print 'MarketValue will be calculated for ' + str(len(universe)) + ' stocks:'
count = 0
secs_time = 0
start_time = time.time()
N = 50
ret_data = pd.DataFrame()
for stk in universe:
data = DataAPI.MktEqudAdjGet(secID=stk, beginDate=begin, endDate=end,
field='secID,tradeDate,marketValue') # 拿取数据
tmp_ret_data = data.sort('tradeDate')
# 市值部分
tmp_ret_data = tmp_ret_data[['tradeDate','marketValue']]
tmp_ret_data.columns = ['tradeDate', stk]
if ret_data.empty:
ret_data = tmp_ret_data
else:
ret_data = ret_data.merge(tmp_ret_data, on='tradeDate', how='outer')
# 打印进度部分
count += 1
if count > 0 and count % N == 0:
finish_time = time.time()
print count,
print ' ' + str(np.round((finish_time-start_time) - secs_time, 0)) + ' seconds elapsed.'
secs_time = (finish_time-start_time)
ret_data.to_csv(file_name)
return ret_data
def getWindowMeanTurnoverRateAll(universe, begin, end, window, file_name):
# 获取股票历史滚动窗口平均换手率
print 'WindowMeanTurnoverRate will be calculated for ' + str(len(universe)) + ' stocks:'
count = 0
secs_time = 0
start_time = time.time()
N = 100
ret_data = pd.DataFrame()
for stk in universe:
data = DataAPI.MktEqudAdjGet(secID=stk, beginDate=begin, endDate=end,
field='secID,tradeDate,turnoverRate') # 拿取数据
tmp_ret_data = data.sort('tradeDate')
# 市值部分
tmp_ret_data['windowMeanTurnoverRate'] = pd.rolling_mean(tmp_ret_data['turnoverRate'], window=window)
tmp_ret_data = tmp_ret_data[['tradeDate','windowMeanTurnoverRate']]
tmp_ret_data.columns = ['tradeDate', stk]
if ret_data.empty:
ret_data = tmp_ret_data
else:
ret_data = ret_data.merge(tmp_ret_data, on='tradeDate', how='outer')
# 打印进度部分
count += 1
if count > 0 and count % N == 0:
finish_time = time.time()
print count,
print ' ' + str(np.round((finish_time-start_time) - secs_time, 0)) + ' seconds elapsed.'
secs_time = (finish_time-start_time)
ret_data.to_csv(file_name)
return ret_data
上面分别定义了计算本文关心的几个变量的函数,其中包括:
- 价量相关系数,getVolPriceCorrAll
- 历史收益率,getBackwardReturnsAll
- 未来收益率,getForwardReturnsAll
- 市值,getMarketValueAll
- 历史窗口日均换手率,getWindowMeanTurnoverRateAll
下面利用这五个函数分别计算我们需要的各种变量(我们只用了全A股中的50只作为示例,感兴趣的读者只需要将下面cell中第5行中的universe修改即可计算更大股票池的数据),并将这些变量保存在文件中以供调用。
begin_date = '20060101' # 开始日期
end_date = '20160802' # 结束日期
universe = set_universe('A') # 股票池
universe = universe[0:50] # 计算速度缓慢,仅以部分股票池作为sample
# ----------- 计算量价相关系数部分 ----------------
window_corr = 15
print '======================='
start_time = time.time()
forward_returns_data = getVolPriceCorrAll(universe=universe, begin=begin_date, end=end_date, window=window_corr, file_name='VolPriceCorr_W15_FullA_sample.csv')
finish_time = time.time()
print ''
print str(finish_time-start_time) + ' seconds elapsed in total.'
# ----------- 计算股票历史窗口(一个月)收益率部分 ----------------
window_return = 20
print '======================='
start_time = time.time()
forward_returns_data = getBackwardReturnsAll(universe=universe, begin=begin_date, end=end_date, window=window_return, file_name='BackwardReturns_W20_FullA_Sample.csv')
finish_time = time.time()
print ''
print str(finish_time-start_time) + ' seconds elapsed in total.'
# ----------- 计算股票历史窗口(三个月)收益率部分 ----------------
window_return = 60
print '======================='
start_time = time.time()
forward_returns_data = getBackwardReturnsAll(universe=universe, begin=begin_date, end=end_date, window=window_return, file_name='BackwardReturns_W60_FullA_Sample.csv')
finish_time = time.time()
print ''
print str(finish_time-start_time) + ' seconds elapsed in total.'
# ----------- 计算股票前瞻收益率部分 ----------------
window_return = 20
print '======================='
start_time = time.time()
forward_returns_data = getForwardReturnsAll(universe=universe, begin=begin_date, end=end_date, window=window_return, file_name='ForwardReturns_W20_FullA_Sample.csv')
finish_time = time.time()
print ''
print str(finish_time-start_time) + ' seconds elapsed in total.'
# ----------- 计算股票历史市值部分 ----------------
print '======================='
start_time = time.time()
forward_returns_data = getMarketValueAll(universe=universe, begin=begin_date, end=end_date, file_name='MarketValues_FullA_Sample.csv')
finish_time = time.time()
print ''
print str(finish_time-start_time) + ' seconds elapsed in total.'
# ----------- 计算历史月度日均换手率部分 ----------------
window = 20
print '======================='
start_time = time.time()
forward_returns_data = getWindowMeanTurnoverRateAll(universe=universe, begin=begin_date, end=end_date, window=window, file_name='TurnoverRateWindowMean_W20_FullA_Sample.csv')
finish_time = time.time()
print ''
print str(finish_time-start_time) + ' seconds elapsed in total.'

3. 量价因子截面特征
3.1 首先加载计算好的数据文件:
# 提取数据corr_data = pd.read_csv('VolPriceCorr_W15_FullA.csv') # 15天窗口量价相关系数forward_20d_return_data = pd.read_csv('ForwardReturns_W20_FullA.csv') # 未来20天收益率 backward_20d_return_data = pd.read_csv('BackwardReturns_W20_FullA.csv') # 过去20天收益率 backward_60d_return_data = pd.read_csv('BackwardReturns_W60_FullA.csv') # 过去60天收益率 mkt_value_data = pd.read_csv('MarketValues_FullA.csv') # 市值数据turnover_rate_data = pd.read_csv('TurnoverRateWindowMean_W20_FullA.csv') # 过去20天日均换手率数据corr_data['tradeDate'] = map(Date.toDateTime, map(DateTime.parseISO, corr_data['tradeDate']))forward_20d_return_data['tradeDate'] = map(Date.toDateTime, map(DateTime.parseISO, forward_20d_return_data['tradeDate']))backward_20d_return_data['tradeDate'] = map(Date.toDateTime, map(DateTime.parseISO, backward_20d_return_data['tradeDate']))backward_60d_return_data['tradeDate'] = map(Date.toDateTime, map(DateTime.parseISO, backward_60d_return_data['tradeDate']))mkt_value_data['tradeDate'] = map(Date.toDateTime, map(DateTime.parseISO, mkt_value_data['tradeDate']))turnover_rate_data['tradeDate'] = map(Date.toDateTime, map(DateTime.parseISO, turnover_rate_data['tradeDate']))corr_data = corr_data[corr_data.columns[1:]].set_index('tradeDate')forward_20d_return_data = forward_20d_return_data[forward_20d_return_data.columns[1:]].set_index('tradeDate')backward_20d_return_data = backward_20d_return_data[backward_20d_return_data.columns[1:]].set_index('tradeDate')backward_60d_return_data = backward_60d_return_data[backward_60d_return_data.columns[1:]].set_index('tradeDate')mkt_value_data = mkt_value_data[mkt_value_data.columns[1:]].set_index('tradeDate')turnover_rate_data = turnover_rate_data[turnover_rate_data.columns[1:]].set_index('tradeDate')
下表中,展示了我们计算好的corr_data数据文件的一部分,主要为了说明我们接下来使用的数据dataframe的结构:
- 每一行为日期,每个交易日均有计算数据,从2006年到2016年8月
- 每一列为股票,股票池为全A股
corr_data.tail()
得到相关系数表:


3.2 量价相关因子截面特征
接下来,我们简单检查一下我们计算得到的量价相关因子的截面特征
# 量价相关性历史表现
n_quantile = 10
# 和海通研报一样,统计十分位数
cols_mean = ['meanQ'+str(i+1) for i in range(n_quantile)]
cols = cols_mean
corr_means = pd.DataFrame(index=corr_data.index, columns=cols)
# 计算相关系数分组平均值
for dt in corr_means.index:
qt_mean_results = []
# 相关系数去掉nan和绝对值大于1的
tmp_corr = corr_data.ix[dt].dropna()
tmp_corr = tmp_corr[(tmp_corr<=1.0) & (tmp_corr>=-1.0)]
pct_quantiles = 1.0/n_quantile
for i in range(n_quantile):
down = tmp_corr.quantile(pct_quantiles*i)
up = tmp_corr.quantile(pct_quantiles*(i+1))
mean_tmp = tmp_corr[(tmp_corr<=up) & (tmp_corr>=down)].mean()
qt_mean_results.append(mean_tmp)
corr_means.ix[dt] = qt_mean_results
# corr_means是对历史每一天,求量价相关系数在各个十分位里面的平均值
corr_means.tail()
下图给出了2006年至2016年间,在不同时点,将市场上所有股票按量价相关性分10组后,第1组、第5组以及第10组股票量价相关性的均值情况,即我们所说的量价相关性截面特征
- 观察下图可知,量价相关性的截面特征较为稳定
# 量价相关性历史表现作图
fig = plt.figure(figsize=(16, 6))
ax1 = fig.add_subplot(111)
lns1 = ax1.plot(corr_means.index, corr_means.meanQ1, label='Q1')
lns2 = ax1.plot(corr_means.index, corr_means.meanQ5, label='Q5')
lns3 = ax1.plot(corr_means.index, corr_means.meanQ10, label='Q10')
lns = lns1+lns2+lns3
labs = [l.get_label() for l in lns]
ax1.legend(lns, labs, bbox_to_anchor=[0.5, 0.1], loc='', ncol=3, mode="", borderaxespad=0., fontsize=12)
ax1.set_ylabel(u'量价相关系数', fontproperties=font, fontsize=16)
ax1.set_xlabel(u'日期', fontproperties=font, fontsize=16)
ax1.set_title(u"量价相关性历史表现", fontproperties=font, fontsize=16)
ax1.grid()

3.3 量价因子的预测能力初探
接下来,我们计算了每一天的量价因子和之后20日收益的秩相关系数
# ‘过去十五天量价相关系数’和‘之后20天收益’的秩相关系数计算
ic_data = pd.DataFrame(index=corr_data.index, columns=['IC','pValue'])
# 计算相关系数
for dt in ic_data.index:
tmp_corr = corr_data.ix[dt]
tmp_ret = forward_20d_return_data.ix[dt]
cor = pd.DataFrame(tmp_corr)
ret = pd.DataFrame(tmp_ret)
cor.columns = ['corr']
ret.columns = ['ret']
cor['ret'] = ret['ret']
cor = cor[~np.isnan(cor['corr'])][~np.isnan(cor['ret'])]
if len(cor) < 5:
continue
# ic,p_value = st.pearsonr(q['Q'],q['ret']) # 计算相关系数 IC
# ic,p_value = st.pearsonr(q['Q'].rank(),q['ret'].rank()) # 计算秩相关系数 RankIC
ic, p_value = st.spearmanr(cor['corr'],cor['ret']) # 计算秩相关系数 RankIC
ic_data['IC'][dt] = ic
ic_data['pValue'][dt] = p_value
# print len(ic_data['IC']), len(ic_data[ic_data.IC>0]), len(ic_data[ic_data.IC<0])
print 'mean of IC: ', ic_data['IC'].mean()
print 'median of IC: ', ic_data['IC'].median()
print 'the number of IC(all, plus, minus): ', (len(ic_data), len(ic_data[ic_data.IC>0]), len(ic_data[ic_data.IC<0]))
mean of IC:
-0.0415786327101 median of IC: -0.0477574767849 the number of IC(all, plus, minus): (2572, 778, 1760)
从上面计算结果和下图可知,量价因子和未来20日收益的秩相关系数在大部分时间为负,量价因子对于未来20天的收益有预测性
# ‘过去十五天量价相关系数’和‘之后20天收益’的秩相关系数作图
fig = plt.figure(figsize=(16, 6))
ax1 = fig.add_subplot(111)
lns1 = ax1.plot(ic_data.index, ic_data.IC, label='IC')
lns = lns1
labs = [l.get_label() for l in lns]
ax1.legend(lns, labs, bbox_to_anchor=[0.5, 0.1], loc='', ncol=3, mode="", borderaxespad=0., fontsize=12)
ax1.set_ylabel(u'相关系数', fontproperties=font, fontsize=16)
ax1.set_xlabel(u'日期', fontproperties=font, fontsize=16)
ax1.set_title(u"量价因子和未来20日收益之间的秩相关系数", fontproperties=font, fontsize=16)
ax1.grid()

4. 量价因子历史回测概述
本节使用2006年以来的数据对于量价相关性因子历史表现进行回测,进一步简单设计量价因子选股的几个风险因子暴露情况。
4.1 量价因子选股的分组超额收益
n_quantile = 10
# 和海通研报一样,统计十分位数
cols_mean = [i+1 for i in range(n_quantile)]
cols = cols_mean
excess_returns_means = pd.DataFrame(index=corr_data.index, columns=cols)
# 计算相关系数分组的超额收益平均值
for dt in excess_returns_means.index:
qt_mean_results = []
# 相关系数去掉nan和绝对值大于1的
tmp_corr = corr_data.ix[dt].dropna()
tmp_corr = tmp_corr[(tmp_corr<=1.0) & (tmp_corr>=-1.0)]
tmp_return = forward_20d_return_data.ix[dt].dropna()
tmp_return_mean = tmp_return.mean()
pct_quantiles = 1.0/n_quantile
for i in range(n_quantile):
down = tmp_corr.quantile(pct_quantiles*i)
up = tmp_corr.quantile(pct_quantiles*(i+1))
i_quantile_index = tmp_corr[(tmp_corr<=up) & (tmp_corr>=down)].index
mean_tmp = tmp_return[i_quantile_index].mean() - tmp_return_mean
qt_mean_results.append(mean_tmp)
excess_returns_means.ix[dt] = qt_mean_results
excess_returns_means.dropna(inplace=True)
excess_returns_means.tail()
- 上表计算结果,给出了2006年开始,每天进行量价因子十分位选股后,每个分组内股票在未来一个月相对于市场平均收益的超额收益均值
- 注意:十分位分组中,量价因子由小到大排序,即第一组为量价因子最小的组
- 下图展示,量价因子十分位选股后,在未来一个月各个分组的超额收益,可以发现:因子多空收益明显,且因子空头收益更强
fig = plt.figure(figsize=(12, 6))ax1 = fig.add_subplot(111)excess_returns_means_dist = excess_returns_means.mean()# lns1 = ax1.plot(excess_returns_means_dist.index, excess_returns_means_dist.values, '--o', label='IC')excess_dist_plus = excess_returns_means_dist[excess_returns_means_dist>0]excess_dist_minus = excess_returns_means_dist[excess_returns_means_dist<0]lns2 = ax1.bar(excess_dist_plus.index, excess_dist_plus.values, align='center', color='r', width=0.35)lns3 = ax1.bar(excess_dist_minus.index, excess_dist_minus.values, align='center', color='g', width=0.35)ax1.set_xlim(left=0.5, right=len(excess_returns_means_dist)+0.5)ax1.set_ylim(-0.01, 0.004)ax1.set_ylabel(u'超额收益', fontproperties=font, fontsize=16)ax1.set_xlabel(u'十分位分组', fontproperties=font, fontsize=16)ax1.set_xticks(excess_returns_means_dist.index)ax1.set_xticklabels([int(x) for x in ax1.get_xticks()], fontproperties=font, fontsize=14)ax1.set_yticklabels([str(x*100)+'0%' for x in ax1.get_yticks()], fontproperties=font, fontsize=14)ax1.set_title(u"量价相关性选股因子超额收益", fontproperties=font, fontsize=16)ax1.grid()

4.2 量价因子选股的市值分布特征
检查量价因子的小市值暴露情况。因为很多策略因为小市值暴露在A股市场表现优异。
n_quantile = 10
# 和海通研报一样,统计十分位数
cols_mean = [i+1 for i in range(n_quantile)]
cols = cols_mean
mkt_value_means = pd.DataFrame(index=corr_data.index, columns=cols)
# 计算相关系数分组的超额收益平均值
for dt in mkt_value_means.index:
qt_mean_results = []
# 相关系数去掉nan和绝对值大于1的
tmp_corr = corr_data.ix[dt].dropna()
tmp_corr = tmp_corr[(tmp_corr<=1.0) & (tmp_corr>=-1.0)]
tmp_mkt_value = mkt_value_data.ix[dt].dropna()
tmp_mkt_value = tmp_mkt_value.rank()/len(tmp_mkt_value)
pct_quantiles = 1.0/n_quantile
for i in range(n_quantile):
down = tmp_corr.quantile(pct_quantiles*i)
up = tmp_corr.quantile(pct_quantiles*(i+1))
i_quantile_index = tmp_corr[(tmp_corr<=up) & (tmp_corr>=down)].index
mean_tmp = tmp_mkt_value[i_quantile_index].mean()
qt_mean_results.append(mean_tmp)
mkt_value_means.ix[dt] = qt_mean_results
mkt_value_means.dropna(inplace=True)
mkt_value_means.tail()

- 上表计算结果,给出了2006年开始,每天进行量价因子十分位选股后,每个分组内股票的市值百分位均值
- 下图展示,量价因子十分位选股后,各个分组的市值百分位历史均值:量价因子有略微的大市值暴露,与市值因子负相关
fig = plt.figure(figsize=(12, 6))ax1 = fig.add_subplot(111)ax2 = ax1.twinx()mkt_value_means_dist = mkt_value_means.mean()lns1 = ax1.bar(mkt_value_means_dist.index, mkt_value_means_dist.values, align='center', width=0.35)lns2 = ax2.plot(excess_returns_means_dist.index, excess_returns_means_dist.values, 'o-r')ax1.legend(lns1, ['market value(left axis)'], loc=2, fontsize=12)ax2.legend(lns2, ['excess return(right axis)'], fontsize=12)ax1.set_ylim(0.4, 0.6)ax2.set_ylim(-0.01, 0.004)ax1.set_xlim(left=0.5, right=len(mkt_value_means_dist)+0.5)ax1.set_ylabel(u'市值百分位数', fontproperties=font, fontsize=16)ax2.set_ylabel(u'超额收益', fontproperties=font, fontsize=16)ax1.set_xlabel(u'十分位分组', fontproperties=font, fontsize=16)ax1.set_xticks(mkt_value_means_dist.index)ax1.set_xticklabels([int(x) for x in ax1.get_xticks()], fontproperties=font, fontsize=14)ax1.set_yticklabels([str(x*100)+'%' for x in ax1.get_yticks()], fontproperties=font, fontsize=14)ax2.set_yticklabels([str(x*100)+'0%' for x in ax2.get_yticks()], fontproperties=font, fontsize=14)ax1.set_title(u"量价相关性选股因子市值分布特征", fontproperties=font, fontsize=16)ax1.grid()
4.3 量价因子选股的换手率分布特征
n_quantile = 10# 和海通研报一样,统计十分位数cols_mean = [i+1 for i in range(n_quantile)]cols = cols_meanturnover_rate_means = pd.DataFrame(index=corr_data.index, columns=cols)# 计算相关系数分组的超额收益平均值for dt in turnover_rate_means.index: qt_mean_results = [] # 相关系数去掉nan和绝对值大于1的 tmp_corr = corr_data.ix[dt].dropna() tmp_corr = tmp_corr[(tmp_corr<=1.0) & (tmp_corr>=-1.0)] tmp_turnover_rate = turnover_rate_data.ix[dt].dropna() pct_quantiles = 1.0/n_quantile for i in range(n_quantile): down = tmp_corr.quantile(pct_quantiles*i) up = tmp_corr.quantile(pct_quantiles*(i+1)) i_quantile_index = tmp_corr[(tmp_corr<=up) & (tmp_corr>=down)].index mean_tmp = tmp_turnover_rate[i_quantile_index].mean() qt_mean_results.append(mean_tmp) turnover_rate_means.ix[dt] = qt_mean_resultsturnover_rate_means.dropna(inplace=True)turnover_rate_means.tail()

- 上表计算结果,给出了2006年开始,每天进行量价因子十分位选股后,每个分组内股票的前一个月日均换手率的均值
- 下图展示,量价因子十分位选股后,各个分组的1个月日均换手率均值:量价因子对于低换手率有一定风险暴露,换手率随组别上升而逐渐升高
fig = plt.figure(figsize=(12, 6))ax1 = fig.add_subplot(111)ax2 = ax1.twinx()turnover_rate_means_dist = turnover_rate_means.mean()lns1 = ax1.bar(turnover_rate_means_dist.index, turnover_rate_means_dist.values, align='center', width=0.35)lns2 = ax2.plot(excess_returns_means_dist.index, excess_returns_means_dist.values, 'o-r')ax1.legend(lns1, ['turnover rate(left axis)'], loc=2, fontsize=12)ax2.legend(lns2, ['excess return(right axis)'], fontsize=12)ax1.set_ylim(0, 0.05)ax2.set_ylim(-0.01, 0.004)ax1.set_xlim(left=0.5, right=len(turnover_rate_means_dist)+0.5)ax1.set_ylabel(u'换手率', fontproperties=font, fontsize=16)ax2.set_ylabel(u'超额收益', fontproperties=font, fontsize=16)ax1.set_xlabel(u'十分位分组', fontproperties=font, fontsize=16)ax1.set_xticks(turnover_rate_means_dist.index)ax1.set_xticklabels([int(x) for x in ax1.get_xticks()], fontproperties=font, fontsize=14)ax1.set_yticklabels([str(x*100)+'%' for x in ax1.get_yticks()], fontproperties=font, fontsize=14)ax2.set_yticklabels([str(x*100)+'0%' for x in ax2.get_yticks()], fontproperties=font, fontsize=14)ax1.set_title(u"量价相关性选股因子换手率分布特征", fontproperties=font, fontsize=16)ax1.grid()
4.4 量价因子选股的一个月反转分布特征
n_quantile = 10# 和海通研报一样,统计十分位数cols_mean = [i+1 for i in range(n_quantile)]cols = cols_meanhist_returns_means = pd.DataFrame(index=corr_data.index, columns=cols)# 计算相关系数分组的超额收益平均值for dt in hist_returns_means.index: qt_mean_results = [] # 相关系数去掉nan和绝对值大于1的 tmp_corr = corr_data.ix[dt].dropna() tmp_corr = tmp_corr[(tmp_corr<=1.0) & (tmp_corr>=-1.0)] tmp_return = backward_20d_return_data.ix[dt].dropna() tmp_return_mean = tmp_return.mean() pct_quantiles = 1.0/n_quantile for i in range(n_quantile): down = tmp_corr.quantile(pct_quantiles*i) up = tmp_corr.quantile(pct_quantiles*(i+1)) i_quantile_index = tmp_corr[(tmp_corr<=up) & (tmp_corr>=down)].index mean_tmp = tmp_return[i_quantile_index].mean() - tmp_return_mean qt_mean_results.append(mean_tmp) hist_returns_means.ix[dt] = qt_mean_resultshist_returns_means.dropna(inplace=True)hist_returns_means.tail()

- 上表计算结果,给出了2006年开始,每天进行量价因子十分位选股后,每个分组内股票的前一个月超额涨幅(超出市场平均值)的均值
- 下图展示,量价因子十分位选股后,各个分组的前一个月超额涨幅均值:量价因子对于一个月反转因子有一定风险暴露(多头组合即第一组中的股票前一个月平均跑输市场)
fig = plt.figure(figsize=(12, 6))ax1 = fig.add_subplot(111)ax2 = ax1.twinx()hist_returns_means_dist = hist_returns_means.mean()lns1 = ax1.bar(hist_returns_means_dist.index, hist_returns_means_dist.values, align='center', width=0.35)lns2 = ax2.plot(excess_returns_means_dist.index, excess_returns_means_dist.values, 'o-r')ax1.legend(lns1, ['20 day return(left axis)'], loc=2, fontsize=12)ax2.legend(lns2, ['excess return(right axis)'], fontsize=12)ax1.set_ylim(-0.03, 0.07)ax2.set_ylim(-0.01, 0.004)ax1.set_xlim(left=0.5, right=len(hist_returns_means_dist)+0.5)ax1.set_ylabel(u'历史一个月收益率', fontproperties=font, fontsize=16)ax2.set_ylabel(u'超额收益', fontproperties=font, fontsize=16)ax1.set_xlabel(u'十分位分组', fontproperties=font, fontsize=16)ax1.set_xticks(hist_returns_means_dist.index)ax1.set_xticklabels([int(x) for x in ax1.get_xticks()], fontproperties=font, fontsize=14)ax1.set_yticklabels([str(x*100)+'%' for x in ax1.get_yticks()], fontproperties=font, fontsize=14)ax2.set_yticklabels([str(x*100)+'0%' for x in ax2.get_yticks()], fontproperties=font, fontsize=14)ax1.set_title(u"量价相关性选股因子一个月历史收益率(一个月反转因子)分布特征", fontproperties=font, fontsize=16)ax1.grid()

4.5 量价因子选股的三个月反转分布特征
n_quantile = 10# 和海通研报一样,统计十分位数cols_mean = [i+1 for i in range(n_quantile)]cols = cols_meanhist_returns_means = pd.DataFrame(index=corr_data.index, columns=cols)# 计算相关系数分组的超额收益平均值for dt in hist_returns_means.index: qt_mean_results = [] # 相关系数去掉nan和绝对值大于1的 tmp_corr = corr_data.ix[dt].dropna() tmp_corr = tmp_corr[(tmp_corr<=1.0) & (tmp_corr>=-1.0)] tmp_return = backward_60d_return_data.ix[dt].dropna() tmp_return_mean = tmp_return.mean() pct_quantiles = 1.0/n_quantile for i in range(n_quantile): down = tmp_corr.quantile(pct_quantiles*i) up = tmp_corr.quantile(pct_quantiles*(i+1)) i_quantile_index = tmp_corr[(tmp_corr<=up) & (tmp_corr>=down)].index mean_tmp = tmp_return[i_quantile_index].mean() - tmp_return_mean qt_mean_results.append(mean_tmp) hist_returns_means.ix[dt] = qt_mean_resultshist_returns_means.dropna(inplace=True)hist_returns_means.tail()

- 上表计算结果,给出了2006年开始,每天进行量价因子十分位选股后,每个分组内股票的前三个月超额涨幅(超出市场平均值)的均值
- 下图展示,量价因子十分位选股后,各个分组的前三个月超额涨幅均值:股票分组在三个月涨幅上的分布并未呈现出明显的单调性,仅呈现出“两头高,中间低”的特点
fig = plt.figure(figsize=(12, 6))ax1 = fig.add_subplot(111)ax2 = ax1.twinx()hist_returns_means_dist = hist_returns_means.mean()lns1 = ax1.bar(hist_returns_means_dist.index, hist_returns_means_dist.values, align='center', width=0.35)lns2 = ax2.plot(excess_returns_means_dist.index, excess_returns_means_dist.values, 'o-r')ax1.legend(lns1, ['60 day return(left axis)'], loc=2, fontsize=12)ax2.legend(lns2, ['excess return(right axis)'], fontsize=12)ax1.set_ylim(-0.02, 0.04)ax2.set_ylim(-0.01, 0.004)ax1.set_xlim(left=0.5, right=len(hist_returns_means_dist)+0.5)ax1.set_ylabel(u'历史三个月收益率', fontproperties=font, fontsize=16)ax2.set_ylabel(u'超额收益', fontproperties=font, fontsize=16)ax1.set_xlabel(u'十分位分组', fontproperties=font, fontsize=16)ax1.set_xticks(hist_returns_means_dist.index)ax1.set_xticklabels([int(x) for x in ax1.get_xticks()], fontproperties=font, fontsize=14)ax1.set_yticklabels([str(x*100)+'%' for x in ax1.get_yticks()], fontproperties=font, fontsize=14)ax2.set_yticklabels([str(x*100)+'0%' for x in ax2.get_yticks()], fontproperties=font, fontsize=14)ax1.set_title(u"量价相关性选股因子三个月历史收益率(三个月反转因子)分布特征", fontproperties=font, fontsize=16)ax1.grid()
5. 量价因子历史回测净值表现
接下来,考察上述量价因子的选股能力的回测效果。历史回测的基本设置如下:
- 回测时段为2010年1月1日至2016年8月1日
- 股票池为A股全部股票
- 组合每15个交易日调仓,交易费率设为双边万分之二
- 调仓时,涨停、停牌不买入,跌停、停牌不卖出;
- 每月底调仓时,选择股票池中量价因子最小的20%的股票;
5.1 量价因子最小20%股票
start = '2010-01-01' # 回测起始时间
end = '2016-08-01' # 回测结束时间
benchmark = 'ZZ500' # 策略参考标准
universe = set_universe('A') # 证券池,支持股票和基金
capital_base = 10000000 # 起始资金
freq = 'd' # 策略类型,'d'表示日间策略使用日线回测
refresh_rate = 15 # 调仓频率,表示执行handle_data的时间间隔
corr_data = pd.read_csv('VolPriceCorr_W15_FullA.csv') # 读取量价因子数据
corr_data = corr_data[corr_data.columns[1:]].set_index('tradeDate')
corr_dates = corr_data.index.values
quantile_five = 1 # 选取股票的量价因子五分位数,1表示选取股票池中因子最小的10%的股票
commission = Commission(0.0002,0.0002) # 交易费率设为双边万分之二
def initialize(account): # 初始化虚拟账户状态
pass
def handle_data(account): # 每个交易日的买入卖出指令
pre_date = account.previous_date.strftime("%Y-%m-%d")
if pre_date not in corr_dates: # 只在计算过量价因子的交易日调仓
return
# 拿取调仓日前一个交易日的量价因子,并按照相应十分位选择股票
pre_corr = corr_data.ix[pre_date]
pre_corr = pre_corr.dropna()
pre_corr = pre_corr[(pre_corr<=1.0) & (pre_corr>=-1.0)]
pre_corr_min = pre_corr.quantile((quantile_five-1)*0.2)
pre_corr_max = pre_corr.quantile(quantile_five*0.2)
my_univ = pre_corr[pre_corr>=pre_corr_min][pre_corr<pre_corr_max].index.values
# 调仓逻辑
univ = [x for x in my_univ if x in account.universe]
# 不在股票池中的,清仓
for stk in account.valid_secpos:
if stk not in univ:
order_to(stk, 0)
# 在目标股票池中的,等权买入
for stk in univ:
order_pct_to(stk, 1.1/len(univ))
bt_all = {} # 用来保存三个策略运行结果:量价因子,20日反转因子,量价因子与20日反转因子等权重叠加bt_all['corr'] = bt # 保存量价因子回测结果
5.2 一个月反转因子最小(近一个月涨幅最低的)20%股票
start = '2010-01-01' # 回测起始时间end = '2016-08-01' # 回测结束时间benchmark = 'ZZ500' # 策略参考标准universe = set_universe('A') # 证券池,支持股票和基金capital_base = 10000000 # 起始资金freq = 'd' # 策略类型,'d'表示日间策略使用日线回测refresh_rate = 15 # 调仓频率,表示执行handle_data的时间间隔revs_data = pd.read_csv('BackwardReturns_W20_FullA.csv') # 读取反转因子数据revs_data = revs_data[revs_data.columns[1:]].set_index('tradeDate')revs_dates = revs_data.index.valuesquantile_five = 1 # 选取股票的20日反转因子的五分位数,1表示选取股票池中因子最小的20%的股票commission = Commission(0.0002,0.0002) # 交易费率设为双边万分之二def initialize(account): # 初始化虚拟账户状态 passdef handle_data(account): # 每个交易日的买入卖出指令 pre_date = account.previous_date.strftime("%Y-%m-%d") if pre_date not in revs_dates: # 只在计算过反转因子的交易日调仓 return # 拿取调仓日前一个交易日的反转因子,并按照相应十分位选择股票 pre_revs = revs_data.ix[pre_date] pre_revs = pre_revs.dropna() pre_revs_min = pre_revs.quantile((quantile_five-1)*0.2) pre_revs_max = pre_revs.quantile(quantile_five*0.2) my_univ = pre_revs[pre_revs>=pre_revs_min][pre_revs<pre_revs_max].index.values # 调仓逻辑 univ = [x for x in my_univ if x in account.universe] # 不在股票池中的,清仓 for stk in account.valid_secpos: if stk not in univ: order_to(stk, 0) # 在目标股票池中的,等权买入 for stk in univ: order_pct_to(stk, 1.1/len(univ))
bt_all['revs'] = bt # 保存一个月反转因子回测结果
5.3 量价因子叠加反转因子选股
- 量价因子和反转因子分别标准化,之后相加生成叠加因子,选叠加因子最小的20%股票
start = '2010-01-01' # 回测起始时间end = '2016-08-01' # 回测结束时间benchmark = 'ZZ500' # 策略参考标准universe = set_universe('A') # 证券池,支持股票和基金capital_base = 10000000 # 起始资金freq = 'd' # 策略类型,'d'表示日间策略使用日线回测refresh_rate = 15 # 调仓频率,表示执行handle_data的时间间隔corr_data = pd.read_csv('VolPriceCorr_W15_FullA.csv') # 读取量价因子数据corr_data = corr_data[corr_data.columns[1:]].set_index('tradeDate')corr_dates = corr_data.index.valuesrevs_data = pd.read_csv('BackwardReturns_W20_FullA.csv') # 读取反转因子数据revs_data = revs_data[revs_data.columns[1:]].set_index('tradeDate')quantile_five = 1 # 选取股票的因子五分位数,1表示选取股票池中因子最小的20%的股票commission = Commission(0.0002,0.0002) # 交易费率设为双边万分之二def initialize(account): # 初始化虚拟账户状态 passdef handle_data(account): # 每个交易日的买入卖出指令 pre_date = account.previous_date.strftime("%Y-%m-%d") if pre_date not in corr_dates: # 只在计算过量价因子的交易日调仓 return # 拿取调仓日前一个交易日的量价因子和反转因子,并按照相应分位选择股票 pre_corr = corr_data.ix[pre_date] pre_corr = pre_corr[(pre_corr<=1.0) & (pre_corr>=-1.0)] pre_revs = revs_data.ix[pre_date] # 量价因子和反转因子只做简单的等权叠加 pre_data = pd.Series(standardize(pre_corr.to_dict())) + pd.Series(standardize(pre_revs.to_dict())) # 因子标准化使用了uqer的函数standardize pre_data = pre_data.dropna() pre_data_min = pre_data.quantile((quantile_five-1)*0.2) pre_data_max = pre_data.quantile(quantile_five*0.2) my_univ = pre_data[pre_data>=pre_data_min][pre_data<pre_data_max].index.values # 调仓逻辑 univ = [x for x in my_univ if x in account.universe] # 不在股票池中的,清仓 for stk in account.valid_secpos: if stk not in univ: order_to(stk, 0) # 在目标股票池中的,等权买入 for stk in univ: order_pct_to(stk, 1.1/len(univ))
bt_all['corr + revs'] = bt
5.4 上述三个组合对比
此处对比,量价因子、反转因子、量价因子叠加反转因子这三个组合的回测结果
results = {}
for x in bt_all.keys():
results[x] = {}
results[x]['bt'] = bt_all[x]
fig = plt.figure(figsize=(10,8))
fig.set_tight_layout(True)
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
ax1.grid()
ax2.grid()
for qt in ['corr','revs','corr + revs']:
bt = results[qt]['bt']
data = bt[[u'tradeDate',u'portfolio_value',u'benchmark_return']]
data['portfolio_return'] = data.portfolio_value/data.portfolio_value.shift(1) - 1.0 # 总头寸每日回报率
data['portfolio_return'].ix[0] = data['portfolio_value'].ix[0]/ 10000000.0 - 1.0
data['excess_return'] = data.portfolio_return - data.benchmark_return # 总头寸每日超额回报率
data['excess'] = data.excess_return + 1.0
data['excess'] = data.excess.cumprod() # 总头寸对冲指数后的净值序列
data['portfolio'] = data.portfolio_return + 1.0
data['portfolio'] = data.portfolio.cumprod() # 总头寸不对冲时的净值序列
data['benchmark'] = data.benchmark_return + 1.0
data['benchmark'] = data.benchmark.cumprod() # benchmark的净值序列
results[qt]['hedged_max_drawdown'] = max([1 - v/max(1, max(data['excess'][:i+1])) for i,v in enumerate(data['excess'])]) # 对冲后净值最大回撤
results[qt]['hedged_volatility'] = np.std(data['excess_return'])*np.sqrt(252)
results[qt]['hedged_annualized_return'] = (data['excess'].values[-1])**(252.0/len(data['excess'])) - 1.0
# data[['portfolio','benchmark','excess']].plot(figsize=(12,8))
# ax.plot(data[['portfolio','benchmark','excess']], label=str(qt))
ax1.plot(data['tradeDate'], data[['portfolio']], label=str(qt))
ax2.plot(data['tradeDate'], data[['excess']], label=str(qt))
ax1.legend(loc=0, fontsize=12)
ax2.legend(loc=0, fontsize=12)
ax1.set_ylabel(u"净值", fontproperties=font, fontsize=16)
ax2.set_ylabel(u"对冲净值", fontproperties=font, fontsize=16)
ax1.set_title(u"量价因子和反转因子选股能力对比 - 净值走势", fontproperties=font, fontsize=16)
ax2.set_title(u"量价因子和反转因子选股能力对比 - 对冲中证500指数后净值走势", fontproperties=font, fontsize=16)
上图中可以发现:
- 蓝色曲线为量价因子,绿色为反转因子,红色为量价因子叠加反转因子
- 量价因子的漫长的熊市中走势稳健,并一直打败反转因子
- 反转因子在15年之后表现出色
- 量价因子叠加反转因子,能起到意想不到的叠加效果
5.5 量价因子选股 —— 不同五分位数组合回测走势比较
# 可编辑部分与 strategy 模式一样,其余部分按本例代码编写即可# -----------回测参数部分开始,可编辑------------start = '2010-01-01' # 回测起始时间end = '2016-08-01' # 回测结束时间benchmark = 'ZZ500' # 策略参考标准universe = set_universe('A') # 证券池,支持股票和基金capital_base = 10000000 # 起始资金freq = 'd' # 策略类型,'d'表示日间策略使用日线回测refresh_rate = 15 # 调仓频率,表示执行handle_data的时间间隔corr_data = pd.read_csv('VolPriceCorr_W15_FullA.csv') # 读取量价因子数据corr_data = corr_data[corr_data.columns[1:]].set_index('tradeDate')corr_dates = corr_data.index.values# ---------------回测参数部分结束----------------# 把回测参数封装到 SimulationParameters 中,供 quick_backtest 使用sim_params = quartz.SimulationParameters(start, end, benchmark, universe, capital_base)# 获取回测行情数据idxmap, data = quartz.get_daily_data(sim_params)# 运行结果results_corr = {}# 调整参数(选取股票的量价因子五分位数),进行快速回测for quantile_five in range(1, 6): # ---------------策略逻辑部分---------------- commission = Commission(0.0002,0.0002) # 交易费率设为双边万分之二 def initialize(account): # 初始化虚拟账户状态 pass def handle_data(account): # 每个交易日的买入卖出指令 pre_date = account.previous_date.strftime("%Y-%m-%d") if pre_date not in corr_dates: # 只在计算过量价因子的交易日调仓 return # 拿取调仓日前一个交易日的量价因子,并按照相应十分位选择股票 pre_corr = corr_data.ix[pre_date] pre_corr = pre_corr.dropna() pre_corr = pre_corr[(pre_corr<=1.0) & (pre_corr>=-1.0)] pre_corr_min = pre_corr.quantile((quantile_five-1)*0.2) pre_corr_max = pre_corr.quantile(quantile_five*0.2) my_univ = pre_corr[pre_corr>=pre_corr_min][pre_corr<pre_corr_max].index.values # 调仓逻辑 univ = [x for x in my_univ if x in account.universe] # 不在股票池中的,清仓 for stk in account.valid_secpos: if stk not in univ: order_to(stk, 0) # 在目标股票池中的,等权买入 for stk in univ: order_pct_to(stk, 1.1/len(univ)) # ---------------策略逻辑部分结束---------------- # 把回测逻辑封装到 TradingStrategy 中,供 quick_backtest 使用 strategy = quartz.TradingStrategy(initialize, handle_data) # 回测部分 bt, acct = quartz.quick_backtest(sim_params, strategy, idxmap, data, refresh_rate=refresh_rate, commission=commission) # 对于回测的结果,可以通过 perf_parse 函数计算风险指标 perf = quartz.perf_parse(bt, acct) # 保存运行结果 tmp = {} tmp['bt'] = bt tmp['annualized_return'] = perf['annualized_return'] tmp['volatility'] = perf['volatility'] tmp['max_drawdown'] = perf['max_drawdown'] tmp['alpha'] = perf['alpha'] tmp['beta'] = perf['beta'] tmp['sharpe'] = perf['sharpe'] tmp['information_ratio'] = perf['information_ratio'] results_corr[quantile_five] = tmp print str(quantile_five),print 'done'
1
2
3
4
5 done
fig = plt.figure(figsize=(10,8))
fig.set_tight_layout(True)
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
ax1.grid()
ax2.grid()
for qt in results_corr:
bt = results_corr[qt]['bt']
data = bt[[u'tradeDate',u'portfolio_value',u'benchmark_return']]
data['portfolio_return'] = data.portfolio_value/data.portfolio_value.shift(1) - 1.0 # 总头寸每日回报率
data['portfolio_return'].ix[0] = data['portfolio_value'].ix[0]/ 10000000.0 - 1.0
data['excess_return'] = data.portfolio_return - data.benchmark_return # 总头寸每日超额回报率
data['excess'] = data.excess_return + 1.0
data['excess'] = data.excess.cumprod() # 总头寸对冲指数后的净值序列
data['portfolio'] = data.portfolio_return + 1.0
data['portfolio'] = data.portfolio.cumprod() # 总头寸不对冲时的净值序列
data['benchmark'] = data.benchmark_return + 1.0
data['benchmark'] = data.benchmark.cumprod() # benchmark的净值序列
results_corr[qt]['hedged_max_drawdown'] = max([1 - v/max(1, max(data['excess'][:i+1])) for i,v in enumerate(data['excess'])]) # 对冲后净值最大回撤
results_corr[qt]['hedged_volatility'] = np.std(data['excess_return'])*np.sqrt(252)
results_corr[qt]['hedged_annualized_return'] = (data['excess'].values[-1])**(252.0/len(data['excess'])) - 1.0
# data[['portfolio','benchmark','excess']].plot(figsize=(12,8))
# ax.plot(data[['portfolio','benchmark','excess']], label=str(qt))
ax1.plot(data['tradeDate'], data[['portfolio']], label=str(qt))
ax2.plot(data['tradeDate'], data[['excess']], label=str(qt))
ax1.legend(loc=0, fontsize=12)
ax2.legend(loc=0, fontsize=12)
ax1.set_ylabel(u"净值", fontproperties=font, fontsize=16)
ax2.set_ylabel(u"对冲净值", fontproperties=font, fontsize=16)
ax1.set_title(u"量价因子 - 不同五分位数分组选股净值走势", fontproperties=font, fontsize=16)
ax2.set_title(u"量价因子 - 不同五分位数分组选股对冲中证500指数后净值走势", fontproperties=font, fontsize=16)

上面的图片显示“量价因子-不同五分位数分组选股”的净值走势,其中下面一张图片展示出各组头寸对冲完中证500指数后的净值走势,可以看到:
- 不同的五分位数组对应的净值走势顺序区分度很高!
下面的表格展示出不同分位数组合的各项风险指标,每次调仓均买入量价因子最小的20%股票的策略,即最小分位数的组合(组合1)各项指标表现都非常出色:
# results 转换为 DataFrame
import pandas
results_pd = pandas.DataFrame(results_corr).T.sort_index()
results_pd = results_pd[[u'alpha', u'beta', u'information_ratio', u'sharpe',
u'annualized_return', u'max_drawdown', u'volatility',
u'hedged_annualized_return', u'hedged_max_drawdown', u'hedged_volatility']]
for col in results_pd.columns:
results_pd[col] = [np.round(x, 3) for x in results_pd[col]]
cols = [(u'风险指标', u'Alpha'), (u'风险指标', u'Beta'), (u'风险指标', u'信息比率'), (u'风险指标', u'夏普比率'),
(u'纯股票多头时', u'年化收益'), (u'纯股票多头时', u'最大回撤'), (u'纯股票多头时', u'收益波动率'),
(u'对冲后', u'年化收益'), (u'对冲后', u'最大回撤'),
(u'对冲后', u'收益波动率')]
results_pd.columns = pd.MultiIndex.from_tuples(cols)
results_pd.index.name = u'五分位组别'
results_pd

5.6 量价因子叠加反转因子选股 —— 不同五分位数组合回测走势比较
- 量价因子和反转因子分别标准化,之后直接等权相加生成叠加因子
# 可编辑部分与 strategy 模式一样,其余部分按本例代码编写即可# -----------回测参数部分开始,可编辑------------start = '2010-01-01' # 回测起始时间end = '2016-08-01' # 回测结束时间benchmark = 'ZZ500' # 策略参考标准universe = set_universe('A') # 证券池,支持股票和基金capital_base = 10000000 # 起始资金freq = 'd' # 策略类型,'d'表示日间策略使用日线回测refresh_rate = 15 # 调仓频率,表示执行handle_data的时间间隔corr_data = pd.read_csv('VolPriceCorr_W15_FullA.csv') # 读取量价因子数据corr_data = corr_data[corr_data.columns[1:]].set_index('tradeDate')corr_dates = corr_data.index.valuesrevs_data = pd.read_csv('BackwardReturns_W20_FullA.csv') # 读取反转因子数据revs_data = revs_data[revs_data.columns[1:]].set_index('tradeDate')# ---------------回测参数部分结束----------------# 把回测参数封装到 SimulationParameters 中,供 quick_backtest 使用sim_params = quartz.SimulationParameters(start, end, benchmark, universe, capital_base)# 获取回测行情数据idxmap, data = quartz.get_daily_data(sim_params)# 运行结果results_corrPlusRevs = {}# 调整参数(选取股票的因子五分位数),进行快速回测for quantile_five in range(1, 6): # ---------------策略逻辑部分---------------- commission = Commission(0.0002,0.0002) # 交易费率设为双边万分之二 def initialize(account): # 初始化虚拟账户状态 pass def handle_data(account): # 每个交易日的买入卖出指令 pre_date = account.previous_date.strftime("%Y-%m-%d") if pre_date not in corr_dates: # 只在计算过量价因子的交易日调仓 return # 拿取调仓日前一个交易日的量价因子和反转因子,并按照相应分位选择股票 pre_corr = corr_data.ix[pre_date] pre_corr = pre_corr[(pre_corr<=1.0) & (pre_corr>=-1.0)] pre_revs = revs_data.ix[pre_date] # 量价因子和反转因子只做简单的等权叠加 pre_data = pd.Series(standardize(pre_corr.to_dict())) + pd.Series(standardize(pre_revs.to_dict())) pre_data = pre_data.dropna() pre_data_min = pre_data.quantile((quantile_five-1)*0.2) pre_data_max = pre_data.quantile(quantile_five*0.2) my_univ = pre_data[pre_data>=pre_data_min][pre_data<pre_data_max].index.values # 调仓逻辑 univ = [x for x in my_univ if x in account.universe] # 不在股票池中的,清仓 for stk in account.valid_secpos: if stk not in univ: order_to(stk, 0) # 在目标股票池中的,等权买入 for stk in univ: order_pct_to(stk, 1.1/len(univ)) # ---------------策略逻辑部分结束---------------- # 把回测逻辑封装到 TradingStrategy 中,供 quick_backtest 使用 strategy = quartz.TradingStrategy(initialize, handle_data) # 回测部分 bt, acct = quartz.quick_backtest(sim_params, strategy, idxmap, data, refresh_rate=refresh_rate, commission=commission) # 对于回测的结果,可以通过 perf_parse 函数计算风险指标 perf = quartz.perf_parse(bt, acct) # 保存运行结果 tmp = {} tmp['bt'] = bt tmp['annualized_return'] = perf['annualized_return'] tmp['volatility'] = perf['volatility'] tmp['max_drawdown'] = perf['max_drawdown'] tmp['alpha'] = perf['alpha'] tmp['beta'] = perf['beta'] tmp['sharpe'] = perf['sharpe'] tmp['information_ratio'] = perf['information_ratio'] results_corrPlusRevs[quantile_five] = tmp print str(quantile_five),print 'done'
1
2
3
4
5 done
fig = plt.figure(figsize=(10,8))
fig.set_tight_layout(True)
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
ax1.grid()
ax2.grid()
for qt in results_corrPlusRevs:
bt = results_corrPlusRevs[qt]['bt']
data = bt[[u'tradeDate',u'portfolio_value',u'benchmark_return']]
data['portfolio_return'] = data.portfolio_value/data.portfolio_value.shift(1) - 1.0 # 总头寸每日回报率
data['portfolio_return'].ix[0] = data['portfolio_value'].ix[0]/ 10000000.0 - 1.0
data['excess_return'] = data.portfolio_return - data.benchmark_return # 总头寸每日超额回报率
data['excess'] = data.excess_return + 1.0
data['excess'] = data.excess.cumprod() # 总头寸对冲指数后的净值序列
data['portfolio'] = data.portfolio_return + 1.0
data['portfolio'] = data.portfolio.cumprod() # 总头寸不对冲时的净值序列
data['benchmark'] = data.benchmark_return + 1.0
data['benchmark'] = data.benchmark.cumprod() # benchmark的净值序列
results_corrPlusRevs[qt]['hedged_max_drawdown'] = max([1 - v/max(1, max(data['excess'][:i+1])) for i,v in enumerate(data['excess'])]) # 对冲后净值最大回撤
results_corrPlusRevs[qt]['hedged_volatility'] = np.std(data['excess_return'])*np.sqrt(252)
results_corrPlusRevs[qt]['hedged_annualized_return'] = (data['excess'].values[-1])**(252.0/len(data['excess'])) - 1.0
# data[['portfolio','benchmark','excess']].plot(figsize=(12,8))
# ax.plot(data[['portfolio','benchmark','excess']], label=str(qt))
ax1.plot(data['tradeDate'], data[['portfolio']], label=str(qt))
ax2.plot(data['tradeDate'], data[['excess']], label=str(qt))
ax1.legend(loc=0, fontsize=12)
ax2.legend(loc=0, fontsize=12)
ax1.set_ylabel(u"净值", fontproperties=font, fontsize=16)
ax2.set_ylabel(u"对冲净值", fontproperties=font, fontsize=16)
ax1.set_title(u"量价因子与反转因子等权叠加选股 - 不同五分位数分组选股净值走势", fontproperties=font, fontsize=16)
ax2.set_title(u"量价因子与反转因子等权叠加选股 - 不同五分位数分组选股对冲中证500指数后净值走势", fontproperties=font, fontsize=16)
上面的图片显示“量价因子叠加反转因子-不同五分位数分组选股”的净值走势,其中下面一张图片展示出各组头寸对冲完中证500指数后的净值走势,可以看到:
- 不同的五分位数组对应的净值走势顺序区分度很高!
下面的表格展示出不同分位数组合的各项风险指标,每次调仓均买入量价因子反转因子叠加后最小的20%股票的策略,即最小分位数的组合(组合1)各项指标表现都非常出色:
# results 转换为 DataFrame
import pandas
results_pd = pandas.DataFrame(results_corrPlusRevs).T.sort_index()
results_pd = results_pd[[u'alpha', u'beta', u'information_ratio', u'sharpe',
u'annualized_return', u'max_drawdown', u'volatility',
u'hedged_annualized_return', u'hedged_max_drawdown', u'hedged_volatility']]
for col in results_pd.columns:
results_pd[col] = [np.round(x, 3) for x in results_pd[col]]
cols = [(u'风险指标', u'Alpha'), (u'风险指标', u'Beta'), (u'风险指标', u'信息比率'), (u'风险指标', u'夏普比率'),
(u'纯股票多头时', u'年化收益'), (u'纯股票多头时', u'最大回撤'), (u'纯股票多头时', u'收益波动率'),
(u'对冲后', u'年化收益'), (u'对冲后', u'最大回撤'),
(u'对冲后', u'收益波动率')]
results_pd.columns = pd.MultiIndex.from_tuples(cols)
results_pd.index.name = u'五分位组别'
results_pd

5.7 更长回测时间 —— 06年开始回测
- 量价因子和反转因子分别标准化,之后直接等权相加生成叠加因子
- 此处选择叠加因子最小的20%股票作为持仓组合
start = '2006-01-01' # 回测起始时间end = '2016-08-01' # 回测结束时间benchmark = 'ZZ500' # 策略参考标准universe = set_universe('A') # 证券池,支持股票和基金capital_base = 2000000 # 起始资金freq = 'd' # 策略类型,'d'表示日间策略使用日线回测refresh_rate = 15 # 调仓频率,表示执行handle_data的时间间隔corr_data = pd.read_csv('VolPriceCorr_W15_FullA.csv') # 读取量价因子数据corr_data = corr_data[corr_data.columns[1:]].set_index('tradeDate')corr_dates = corr_data.index.valuesrevs_data = pd.read_csv('BackwardReturns_W20_FullA.csv') # 读取反转因子数据revs_data = revs_data[revs_data.columns[1:]].set_index('tradeDate')quantile_five = 1 # 选取股票的因子五分位数,1表示选取股票池中因子最小的20%的股票commission = Commission(0.0002,0.0002) # 交易费率设为双边万分之二def initialize(account): # 初始化虚拟账户状态 passdef handle_data(account): # 每个交易日的买入卖出指令 pre_date = account.previous_date.strftime("%Y-%m-%d") if pre_date not in corr_dates: # 只在计算过量价因子的交易日调仓 return # 拿取调仓日前一个交易日的量价因子和反转因子,并按照相应分位选择股票 pre_corr = corr_data.ix[pre_date] pre_corr = pre_corr[(pre_corr<=1.0) & (pre_corr>=-1.0)] pre_revs = revs_data.ix[pre_date] # 量价因子和反转因子只做简单的等权叠加 pre_data = pd.Series(standardize(pre_corr.to_dict())) + pd.Series(standardize(pre_revs.to_dict())) pre_data = pre_data.dropna() pre_data_min = pre_data.quantile((quantile_five-1)*0.2) pre_data_max = pre_data.quantile(quantile_five*0.2) my_univ = pre_data[pre_data>=pre_data_min][pre_data<pre_data_max].index.values # 调仓逻辑 univ = [x for x in my_univ if x in account.universe] # 不在股票池中的,清仓 for stk in account.valid_secpos: if stk not in univ: order_to(stk, 0) # 在目标股票池中的,等权买入 for stk in univ: order_pct_to(stk, 1.1/len(univ))

fig = plt.figure(figsize=(12,5))fig.set_tight_layout(True)ax1 = fig.add_subplot(111)ax2 = ax1.twinx()ax1.grid()bt_quantile = btdata = bt_quantile[[u'tradeDate',u'portfolio_value',u'benchmark_return']]data['portfolio_return'] = data.portfolio_value/data.portfolio_value.shift(1) - 1.0data['portfolio_return'].ix[0] = data['portfolio_value'].ix[0]/ 2000000.0 - 1.0data['excess_return'] = data.portfolio_return - data.benchmark_returndata['excess'] = data.excess_return + 1.0data['excess'] = data.excess.cumprod()data['portfolio'] = data.portfolio_return + 1.0data['portfolio'] = data.portfolio.cumprod()data['benchmark'] = data.benchmark_return + 1.0data['benchmark'] = data.benchmark.cumprod()# ax.plot(data[['portfolio','benchmark','excess']], label=str(qt))ax1.plot(data['tradeDate'], data[['portfolio']], label='portfolio(left)')ax1.plot(data['tradeDate'], data[['benchmark']], label='benchmark(left)')ax2.plot(data['tradeDate'], data[['excess']], label='hedged(right)', color='r')ax1.legend(loc=2)ax2.legend(loc=0)ax2.set_ylim(bottom=0.5, top=5)ax1.set_ylabel(u"净值", fontproperties=font, fontsize=16)ax2.set_ylabel(u"对冲指数净值", fontproperties=font, fontsize=16)ax2.set_ylabel(u"对冲指数净值", fontproperties=font, fontsize=16)ax1.set_title(u"量价因子反转因子叠加选股的前20%股票回测走势", fontproperties=font, fontsize=16)

- 上图可以看到从06年起的回测结果,展示出量价因子反转因子叠加后的稳定的alpha输出
我们根据量价因子叠加反转因子选取股票组合,表现最好的组合其06年以来年化收益达到41.4%,alpha达到22.6%,beta仅为0.88,展示出稳定盈利的能力。
发布者:股市刺客,转载请注明出处:https://www.95sca.cn/archives/321275
站内所有文章皆来自网络转载或读者投稿,请勿用于商业用途。如有侵权、不妥之处,请联系站长并出示版权证明以便删除。敬请谅解!