股票
-
HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率
本文分析了S&P500指数和SPY ETF,VIX指数和VXX ETN的波动率的可预测性和可交易性。尽管已有大量关于预测高频波动的文献,但大多数仅根据统计误差评估预测。 实际上,这…
-
Python安装TensorFlow 2、tf.keras和深度学习模型的定义
TensorFlow是Google开发和维护的首要的开源深度学习框架。尽管直接使用TensorFlow可能具有挑战性,但现代的tf.keras API使得Keras在TensorF…
-
R语言中的SOM(自组织映射神经网络)对NBA球员聚类分析
自组织映射 (SOM)是一种工具,通过生成二维表示来可视化高维数据中的模式,在高维结构中显示有意义的模式。 导入 通过以下方式使用给定的数据(或数据样本)对SOM进行“训练”: 定…
-
TensorFlow、Keras 和 Python 构建神经网络分析鸢尾花iris数据集|代码数据分享
鸢尾花iris数据集以及MNIST数据集可能是模式识别文献中最著名的数据集之一。 任务描述 这是机器学习分类问题的“Hello World”示例。它由罗纳德·费舍尔于 1936 年…
-
matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类
本示例说明如何使用长短期记忆(LSTM)网络对序列数据进行分类。 要训练深度神经网络对序列数据进行分类,可以使用LSTM网络。LSTM网络使您可以将序列数据输入网络,并根据序列数据…
-
Python中用PyTorch机器学习神经网络分类预测银行客户流失模型
分类问题属于机器学习问题的类别,其中给定一组特征,任务是预测离散值。分类问题的一些常见示例是,预测肿瘤是否为癌症,或者学生是否可能通过考试。 在本文中,鉴于银行客户的某些特征,我们…
-
RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测
2017 年年中,R 推出了 Keras 包 _,_这是一个在 Tensorflow 之上运行的综合库,具有 CPU 和 GPU 功能。 本文将演示如何在 R 中使用 LSTM 实…
-
PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
一个简单的编码器-解码器LSTM神经网络应用于时间序列预测问题:预测天然气价格,预测范围为 10 天。“进入”时间步长也设置为 10 天。) 只需要 10 天来推断接下来的 10 …
-
RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测
2017 年年中,R 推出了 Keras 包 _,_这是一个在 Tensorflow 之上运行的综合库,具有 CPU 和 GPU 功能。 本文将演示如何在 R 中使用 LSTM 实…
-
Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测
获取时间序列数据 df=pd.read_csv(“C://global.csv”) 探索数据 此表中的数据以累积的形式呈现,为了找出每天的新病例,我们需要减去这些值 df.head…
-
使用自组织映射神经网络(SOM)进行客户细分
自组织_映射神经网络(SOM)是一种无监督的数据可视化技术,可用于可视化低维(通常为2维)表示形式的高维数据集。在本文中,我们研究了如何使用R创建用于客户细分的SOM。 SOM由1…
-
matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类
要训练深度神经网络对序列数据进行分类,可以使用LSTM网络。LSTM网络使您可以将序列数据输入网络,并根据序列数据的各个时间步进行预测。 本示例使用日语元音数据集。此示例训练LST…