什么是AP,什么是CP,什么是CAP?很多量化投资人都有这样的疑惑,那么这些到底是什么意思呢?不要急,接下来一一拆解告诉大家!
CAP我们可以理解为:C(一致性),A(可用性),P(分区容错)。
AP:违背了一致性C的要求,只满足可用性和分区容错,即AP。
CP:违背了可用性A的要求,只满足一致性和分区容错,即CP。

CAP原则又称CAP定理,指的是在一个分布式系统中,一致性(Consistency)、可用性(Availability)、分区容错性(Partition tolerance),但是CAP 原则指示3个要素最多只能同时实现两点,不可能三者兼顾,由于网络硬件肯定会出现延迟丢包等问题,但是在分布式系统中,我们必须保证部分网络通信问题不会导致整个服务器集群瘫痪,另外即使分成了多个区,当网络故障消除的时候,我们依然可以保证数据一致性,所以我们必须保证分区容错性。

至于剩下的一致性和可用性,我们需要二选一,但是鱼和熊掌不可兼得,假设我们选择一致性,那我们就不能让用户访问无法进行数据同步的机器,毕竟该机器上的数据和其他正常机器上的不一致,但是这样我们就丢弃了可用性;假设我们选择可用性,那我们就可以让用户访问无法进行数据同步的服务器,虽然保证了可用性,但是我们无法保证数据一致性。

AP结构选择了高可用和分区容错性,此时,那个失去联系的节点依然可以向系统提供服务,不过它的数据就不能保证是同步的了(失去了C属性)。Eureka就是一个AP架构的例子,当Eureka客户端心跳消失的时候,那Eureka服务端就会启动自我保护机制,不会剔除该EurekaClient客户端的服务,依然可以提供需求。

CP结构选择的是一致性和分区容错性,如果选择一致性C(Consistency),为了保证数据库的一致性,我们必须等待失去联系的节点恢复过来,在这个过程中,那个节点是不允许对外提供服务的,这时候系统处于不可用状态(失去了A属性)。最好的例子就是zookeeper,如果客户端心跳消失的时候,zookeeper会很快剔除该服务,之后就无法提供需求。
CAP理论提出就是针对分布式数据库环境的,所以,P这个属性是必须具备的。
在分布式环境下,为了保证系统可用性,通常都采取了复制的方式,避免一个节点损坏,导致系统不可用。那么就出现了每个节点上的数据出现了很多个副本的情况,而数据从一个节点复制到另外的节点时需要时间和要求网络畅通的,所以,当P发生时,也就是无法向某个节点复制数据时,这时候你有两个选择:

选择可用性 A(Availability),此时,那个失去联系的节点依然可以向系统提供服务,不过它的数据就不能保证是同步的了(失去了C属性)。
选择一致性C(Consistency),为了保证数据库的一致性,我们必须等待失去联系的节点恢复过来,在这个过程中,那个节点是不允许对外提供服务的,这时候系统处于不可用状态(失去了A属性)。
发布者:股市刺客,转载请注明出处:https://www.95sca.cn/archives/76720
站内所有文章皆来自网络转载或读者投稿,请勿用于商业用途。如有侵权、不妥之处,请联系站长并出示版权证明以便删除。敬请谅解!