量化
-
TensorFlow、Keras 和 Python 构建神经网络分析鸢尾花iris数据集|代码数据分享
鸢尾花iris数据集以及MNIST数据集可能是模式识别文献中最著名的数据集之一。 任务描述 这是机器学习分类问题的“Hello World”示例。它由罗纳德·费舍尔于 1936 年…
-
matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类
本示例说明如何使用长短期记忆(LSTM)网络对序列数据进行分类。 要训练深度神经网络对序列数据进行分类,可以使用LSTM网络。LSTM网络使您可以将序列数据输入网络,并根据序列数据…
-
Python中用PyTorch机器学习神经网络分类预测银行客户流失模型
分类问题属于机器学习问题的类别,其中给定一组特征,任务是预测离散值。分类问题的一些常见示例是,预测肿瘤是否为癌症,或者学生是否可能通过考试。 在本文中,鉴于银行客户的某些特征,我们…
-
RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测
2017 年年中,R 推出了 Keras 包 _,_这是一个在 Tensorflow 之上运行的综合库,具有 CPU 和 GPU 功能。 本文将演示如何在 R 中使用 LSTM 实…
-
PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
一个简单的编码器-解码器LSTM神经网络应用于时间序列预测问题:预测天然气价格,预测范围为 10 天。“进入”时间步长也设置为 10 天。) 只需要 10 天来推断接下来的 10 …
-
RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测
2017 年年中,R 推出了 Keras 包 _,_这是一个在 Tensorflow 之上运行的综合库,具有 CPU 和 GPU 功能。 本文将演示如何在 R 中使用 LSTM 实…
-
Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测
获取时间序列数据 df=pd.read_csv(“C://global.csv”) 探索数据 此表中的数据以累积的形式呈现,为了找出每天的新病例,我们需要减去这些值 df.head…
-
使用自组织映射神经网络(SOM)进行客户细分
自组织_映射神经网络(SOM)是一种无监督的数据可视化技术,可用于可视化低维(通常为2维)表示形式的高维数据集。在本文中,我们研究了如何使用R创建用于客户细分的SOM。 SOM由1…
-
matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类
要训练深度神经网络对序列数据进行分类,可以使用LSTM网络。LSTM网络使您可以将序列数据输入网络,并根据序列数据的各个时间步进行预测。 本示例使用日语元音数据集。此示例训练LST…
-
HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率
本文分析了S&P500指数和SPY ETF,VIX指数和VXX ETN的波动率的可预测性和可交易性。尽管已有大量关于预测高频波动的文献,但大多数仅根据统计误差评估预测。 实际上,这…
-
【视频】少样本图像分类?迁移学习、自监督学习理论和R语言CNN深度学习卷积神经网络实例
本文介绍了一些在没有太多数据或标记数据的情况下进行图像分类的方法。我将介绍迁移学习、自监督学习的最重要方面。 利用未标记的数据 与标记数据相比,未标记的数据通常更容易访问。不利用这…
-
R语言深度学习:用keras神经网络回归模型预测时间序列数据
回归数据可以用Keras深度学习API轻松拟合。在本教程中,我们将简要地学习如何通过使用R中的Keras神经网络模型来拟合和预测回归数据。 在这里,我们将看到如何创建简单的回归数据…