量化
-
数据分享|R语言用Keras长短期记忆LSTM神经网络分类分析问答文本数据
介绍 本文是在 R 中使用 Keras 的LSTM神经网络分类简单介绍。 软件包 library(tidyverse) #导入、清理、可视化 library(keras) # 用…
-
Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性
该项目包括: 自 2000 年 1 月以来的股票价格数据。我们使用的是 Microsoft 股票。 将时间序列数据转换为分类问题。 使用 TensorFlow 的 LSTM 模型 …
-
Python使用神经网络进行简单文本分类
深度学习无处不在。在本文中,我们将使用Keras进行文本分类。 准备数据集 出于演示目的,我们将使用 20个新闻组 数据集。数据分为20个类别,我们的工作是预测这些类别。如下所…
-
R语言实现神经网络预测股票实例数据分析可视化
如何构建神经网络? 神经网络包括: 输入层:根据现有数据获取输入的层 隐藏层:使用反向传播优化输入变量权重的层,以提高模型的预测能力 输出层:基于输入和隐藏层的数据输出预测 用神经…
-
Python中用PyTorch机器学习神经网络分类预测银行客户流失模型
分类问题属于机器学习问题的类别,其中给定一组特征,任务是预测离散值。分类问题的一些常见示例是,预测肿瘤是否为癌症,或者学生是否可能通过考试。在本文中,鉴于银行客户的某些特征,我们将…
-
R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST)
在本文中,我们将学习如何使用keras,用手写数字图像数据集(即MNIST)进行深度学习。本文的目的是为了让大家亲身体验并熟悉培训课程中的神经网络部分。 1 软件包的下载和安装 在…
-
RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测
2017 年年中,R 推出了 Keras 包 _,_这是一个在 Tensorflow 之上运行的综合库,具有 CPU 和 GPU 功能。本文将演示如何在 R 中使用 LSTM 实现…
-
R语言深度学习:用keras神经网络回归模型预测时间序列数据
回归数据可以用Keras深度学习API轻松拟合。在本教程中,我们将简要地学习如何通过使用R中的Keras神经网络模型来拟合和预测回归数据。在这里,我们将看到如何创建简单的回归数据,…
-
HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率
本文分析了S&P500指数和SPY ETF,VIX指数和VXX ETN的波动率的可预测性和可交易性。尽管已有大量关于预测高频波动的文献,但大多数仅根据统计误差评估预测。实际上,这种…
-
Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测
获取时间序列数据 df=pd.read_csv(“C://global.csv”) 探索数据 此表中的数据以累积的形式呈现,为了找出每天的新病例,我们需要减去这些值 df.head…
-
R语言中的SOM(自组织映射神经网络)对NBA球员聚类分析
导入 自组织映射 (SOM)是一种工具,通过生成二维表示来可视化高维数据中的模式,在高维结构中显示有意义的模式。通过以下方式使用给定的数据(或数据样本)对SOM进行“训练”: 定义…
-
Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测
获取时间序列数据 df=pd.read_csv(“C://global.csv”) 探索数据 此表中的数据以累积的形式呈现,为了找出每天的新病例,我们需要减去这些值 df.head…