量化
-
用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类
介绍 在本文中,我们将看到如何开发具有多个输出的文本分类模型。我们开发一个文本分类模型,该模型可分析文本注释并预测与该注释关联的多个标签。多标签分类问题实际上是多个输出模型的子集。…
-
RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测
简单的介绍 时间序列涉及按时间顺序收集的数据。我用 xt∈R 表示单变量数据,其中 t∈T 是观察数据时的时间索引。时间 t 在 T=Z 的情况下可以是离散的,或者在 T=R 的情…
-
HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率
本文分析了S&P500指数和SPY ETF,VIX指数和VXX ETN的波动率的可预测性和可交易性。尽管已有大量关于预测高频波动的文献,但大多数仅根据统计误差评估预测。实际上,这种…
-
使用自组织映射神经网络(SOM)进行客户细分
自组织_映射神经网络(SOM)是一种无监督的数据可视化技术,可用于可视化低维(通常为2维)表示形式的高维数据集。在本文中,我们研究了如何使用R创建用于客户细分的SOM。 SOM由1…
-
PYTHON TENSORFLOW 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|数据分享
什么是CNN 本文演示了如何训练一个简单的卷积神经网络 (CNN) 来对图像(查看文末了解数据获取方式)进行分类。 Convolutional Neural Networks (…
-
Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类
这个例子展示了如何使用深度学习长短期记忆(LSTM)网络对文本数据进行分类。 文本数据是有顺序的。一段文字是一个词的序列,它们之间可能有依赖关系。为了学习和使用长期依赖关系来对序列…
-
Python中利用长短期记忆模型LSTM进行时间序列预测分析 – 预测电力负荷数据
此示例中,神经网络用于使用2011年4月至2013年2月期间的数据预测公民办公室的电力消耗。 每日数据是通过总计每天提供的15分钟间隔的消耗量来创建的。 LSTM简介 LSTM…
-
HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率
本文分析了S&P500指数和SPY ETF,VIX指数和VXX ETN的波动率的可预测性和可交易性。尽管已有大量关于预测高频波动的文献,但大多数仅根据统计误差评估预测。实际上,这种…
-
Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析
在数据科学学习之旅中,我经常处理日常工作中的时间序列数据集,并据此做出预测。 相关视频:LSTM神经网络架构和工作原理及其在Python中的预测应用 LSTM神经网络架构和原理及其…
-
数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
一个简单的编码器-解码器LSTM神经网络应用于时间序列预测问题:预测天然气价格,预测范围为 10 天。“进入”时间步长也设置为 10 天。) 只需要 10 天来推断接下来的 10 …
-
R语言深度学习Keras循环神经网络(RNN)模型预测多输出变量时间序列
递归神经网络被用来分析序列数据。它在隐藏单元之间建立递归连接,并在学习序列后预测输出。 在本教程中,我们将简要地学习如何用R中的Keras RNN模型来拟合和预测多输出的序列数据,…
-
R语言基于递归神经网络RNN的温度时间序列预测
在本文中,我们将介绍三种提高循环神经网络性能和泛化能力的高级技术。我们演示有关温度预测问题的三个概念,我们使用建筑物屋顶上的传感器的时间数据序列。 概述 在本文中,我们将介绍三种提…