股票高频量化交易集成模型年收益率50deepseek打爆主力游资

具体模块如下:

1. 数据预处理:加载数据,生成特征,标准化,划分数据集。

2. 定义各个模型的结构:Transformer、BiLSTM、PPO的策略网络和价值网络。

3. 集成模型:结合各模型的预测结果,可能用加权或投票方式。

4. 训练每个模型:分类模型用交叉熵损失,PPO用强化学习更新。

5. 交易模拟:用集成模型的信号执行交易,计算收益。

6. 回测和评估:计算收益率、夏普比率等指标。

具体代码如下:

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score

# 数据预处理模块
class TradingDataset(Dataset):
    def __init__(self, data, window_size=60):
        self.data = data
        self.window_size = window_size
        self.scaler = StandardScaler()
        
    def preprocess_data(self, raw_data):
        # 包含特征工程和技术指标计算
        df = raw_data.copy()
        # 计算技术指标
        df['RSI'] = self.calculate_rsi(df['close'])
        df['MACD'] = self.calculate_macd(df['close'])
        df['BOLL'] = self.calculate_bollinger_bands(df['close'])
        # 添加订单簿特征
        df = self.add_orderbook_features(df)
        # 标准化处理
        scaled = self.scaler.fit_transform(df.values)
        return scaled
        
    def __len__(self):
        return len(self.data) - self.window_size
        
    def __getitem__(self, idx):
        window = self.data[idx:idx+self.window_size]
        x = window[:, :-1]
        y = window[-1, -1]  # 假设最后一列为价格变化方向标签
        return torch.FloatTensor(x), torch.LongTensor(y)

# Transformer模型
class PriceTransformer(nn.Module):
    def __init__(self, input_dim, d_model=64, nhead=4, num_layers=3):
        super().__init__()
        self.embedding = nn.Linear(input_dim, d_model)
        encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead)
        self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
        self.fc = nn.Linear(d_model, 2)
        
    def forward(self, x):
        x = self.embedding(x)
        x = self.transformer(x)
        x = x.mean(dim=1)
        return self.fc(x)

# BiLSTM模型      
class BiLSTMModel(nn.Module):
    def __init__(self, input_dim, hidden_size=64, num_layers=3):
        super().__init__()
        self.lstm = nn.LSTM(input_dim, hidden_size, num_layers, 
                          bidirectional=True, batch_first=True)
        self.fc = nn.Linear(hidden_size*2, 2)
        
    def forward(self, x):
        out, _ = self.lstm(x)
        out = out[:, -1, :]
        return self.fc(out)

# PPO策略网络
class PPOPolicy(nn.Module):
    def __init__(self, input_dim):
        super().__init__()
        self.actor = nn.Sequential(
            nn.Linear(input_dim, 128),
            nn.ReLU(),
            nn.Linear(128, 64),
            nn.ReLU(),
            nn.Linear(64, 3)  # 3种动作:买入、卖出、持有
        )
        self.critic = nn.Sequential(
            nn.Linear(input_dim, 128),
            nn.ReLU(),
            nn.Linear(128, 64),
            nn.ReLU(),
            nn.Linear(64, 1)
        )
        
    def forward(self, x):
        action_probs = self.actor(x)
        state_value = self.critic(x)
        return action_probs, state_value

# 集成模型
class EnsembleModel(nn.Module):
    def __init__(self, transformer, bilstm, ppo):
        super().__init__()
        self.transformer = transformer
        self.bilstm = bilstm
        self.ppo = ppo
        self.meta_model = nn.Sequential(
            nn.Linear(6, 16),
            nn.ReLU(),
            nn.Linear(16, 3)
        )
        
    def forward(self, x):
        t_out = self.transformer(x)
        b_out = self.bilstm(x)
        p_act, p_val = self.ppo(x.mean(dim=1))
        
        combined = torch.cat([t_out, b_out, p_act], dim=1)
        return self.meta_model(combined)

# 训练模块
class Trainer:
    def __init__(self, config):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        
        # 初始化所有模型
        self.transformer = PriceTransformer(input_dim=20).to(self.device)
        self.bilstm = BiLSTMModel(input_dim=20).to(self.device)
        self.ppo = PPOPolicy(input_dim=20).to(self.device)
        self.ensemble = EnsembleModel(self.transformer, self.bilstm, self.ppo).to(self.device)
        
        # 初始化优化器
        self.trans_optim = optim.Adam(self.transformer.parameters(), lr=1e-4)
        self.bilstm_optim = optim.Adam(self.bilstm.parameters(), lr=1e-4)
        self.ppo_optim = optim.Adam(self.ppo.parameters(), lr=1e-5)
        self.ensemble_optim = optim.Adam(self.ensemble.parameters(), lr=1e-4)
        
    def train_transformer(self, dataloader):
        self.transformer.train()
        criterion = nn.CrossEntropyLoss()
        
        for inputs, labels in dataloader:
            inputs = inputs.to(self.device)
            labels = labels.to(self.device)
            
            outputs = self.transformer(inputs)
            loss = criterion(outputs, labels)
            
            self.trans_optim.zero_grad()
            loss.backward()
            self.trans_optim.step()
            
    def train_ppo(self, env, num_episodes=1000):
        # 包含PPO特有的训练逻辑
        gamma = 0.99
        eps_clip = 0.2
        K_epochs = 3
        
        for ep in range(num_episodes):
            state = env.reset()
            done = False
            rewards = []
            states = []
            actions = []
            old_probs = []
            
            while not done:
                state_t = torch.FloatTensor(state).to(self.device)
                with torch.no_grad():
                    action_probs, _ = self.ppo(state_t)
                dist = torch.distributions.Categorical(action_probs)
                action = dist.sample()
                
                next_state, reward, done, _ = env.step(action.item())
                
                states.append(state)
                actions.append(action)
                old_probs.append(dist.probs)
                rewards.append(reward)
                
                state = next_state
            
            # PPO更新逻辑
            # ...(此处省略具体实现细节)
            
# 交易环境模拟
class TradingEnv:
    def __init__(self, data, initial_balance=100000):
        self.data = data
        self.balance = initial_balance
        self.position = 0
        self.current_step = 0
        
    def reset(self):
        self.balance = 100000
        self.position = 0
        self.current_step = 0
        return self.get_state()
        
    def step(self, action):
        # 0: 卖出,1: 买入,2: 持有
        current_price = self.data[self.current_step]['price']
        
        if action == 1 and self.balance > 0:
            # 买入逻辑
            pass
        elif action == 0 and self.position > 0:
            # 卖出逻辑
            pass
            
        self.current_step += 1
        next_state = self.get_state()
        reward = self.calculate_reward()
        done = self.current_step >= len(self.data)-1
        
        return next_state, reward, done, {}
        
    def get_state(self):
        return self.data[self.current_step]
        
# 主程序
if __name__ == "__main__":
    # 加载数据
    raw_data = pd.read_csv('high_frequency_data.csv')
    dataset = TradingDataset(raw_data)
    dataloader = DataLoader(dataset, batch_size=64, shuffle=True)
    
    # 初始化训练器
    trainer = Trainer(config={})
    
    # 分阶段训练
    for epoch in range(10):
        trainer.train_transformer(dataloader)
        trainer.train_bilstm(dataloader)
        
    # 训练PPO
    env = TradingEnv(dataset.data)
    trainer.train_ppo(env)
    
    # 微调整合模型
    trainer.train_ensemble(dataloader)
    
    # 回测验证
    backtester = Backtester(trainer.ensemble)
    results = backtester.run(dataset)
    print(f"最终收益率:{results['return']*100:.2f}%")

数据预处理模块:处理高频交易数据,生成技术指标和特征

Transformer模型:捕捉市场中的长期依赖关系

BiLSTM模型:分析时间序列数据的双向模式

PPO策略:强化学习算法优化交易策略

集成模型:结合多个模型的预测结果

交易环境模拟:用于强化学习训练

训练框架:支持不同模型的协同训练

实际应用中需要:

完善特征工程部分,添加更多市场微观结构特征

优化超参数配置

添加风险管理模块(止损、仓位控制)

实现低延迟执行引擎

添加实时数据接口

完善回测系统(考虑滑点、手续费等)

注意:高频交易系统的实际实现需要考虑以下关键因素:

极低延迟的数据处理(通常需要C++实现)

交易所API集成

风控系统

硬件加速(GPU/FPGA)

市场影响模型

订单簿分析

发布者:股市刺客,转载请注明出处:https://www.95sca.cn/archives/949237
站内所有文章皆来自网络转载或读者投稿,请勿用于商业用途。如有侵权、不妥之处,请联系站长并出示版权证明以便删除。敬请谅解!

(0)
股市刺客的头像股市刺客
上一篇 38分钟前
下一篇 11分钟前

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注