本文是量化策略解析系列的第2篇。系列连载见:
# 导入需要使用的库
import akshare as ak
import pandas as pd
import numpy as np
import pandas_ta as ta
# 在matplotlib绘图中显示中文和负号
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['font.family'] = 'STKAITI' # 中文字体'STKAITI'
plt.rcParams['axes.unicode_minus'] = False # 解决坐标轴负数的负号显示问题
# 关闭警告信息
import warnings
warnings.filterwarnings('ignore')
# 获取上证指数数据
index_code = 'sh000001'
start_date = pd.to_datetime('2014-01-01')
end_date = pd.to_datetime('2023-12-31')
price_df = ak.stock_zh_index_daily(symbol=index_code)
price_df['date'] = pd.to_datetime(price_df['date']).dt.date
price_df = price_df[(price_df['date']>=start_date) & (price_df['date']<=end_date)]
price_df = price_df.sort_values('date').set_index('date')
计算每日的收益率
price_df['returns'] = price_df['close'].pct_change().shift(-1).fillna(0)

# 计算移动平均线值
days = 20
price_df[f'ma_{days}'] = ta.sma(price_df['close'], length=days)
# 择时信号:当日均线值大于昨日则开仓,否则清仓
timing_df = (price_df[[f'ma_{days}']].diff()>0) * 1.
timing_df['不择时'] = 1.
# 计算每日收益率
timing_ret = timing_df.mul(price_df['returns'], axis=0)
timing_ret['超额收益'] = (1+timing_ret[f'ma_{days}']).div(1+timing_ret['不择时'], axis=0) - 1.
# 计算累计收益率
cumul_ret = (1 + timing_ret.fillna(0)).cumprod() - 1.
# 可视化输出
cumul_ret.plot(figsize=(10, 6), title='单均线择时')

days_s = 5
days_l = 60
price_df['ma_s'] = ta.sma(price_df['close'], length=days_s)
price_df['ma_l'] = ta.sma(price_df['close'], length=days_l)
# 择时信号:当日短期均线值大于长期均线值则开仓,否则清仓
timing_df = pd.DataFrame()
timing_df['择时'] = (price_df['ma_s']>price_df['ma_l']) * 1.
timing_df['不择时'] = 1.
# 计算择时后的每日收益率
timing_ret = timing_df.mul(price_df['returns'], axis=0)
timing_ret['超额收益'] = (1+timing_ret['择时']).div(1+timing_ret['不择时'], axis=0) - 1.
# 计算累计收益率
cumul_ret = (1 + timing_ret.fillna(0)).cumprod() - 1.
# 可视化输出
cumul_ret.plot(figsize=(10, 6), title='双均线择时')

发布者:股市刺客,转载请注明出处:https://www.95sca.cn/archives/106004
站内所有文章皆来自网络转载或读者投稿,请勿用于商业用途。如有侵权、不妥之处,请联系站长并出示版权证明以便删除。敬请谅解!