一、AO指标的计算
二 、生成交易信息
三、动量震荡指标AO策略量化实战

import pandas as pd
import numpy as np
import pandas_datareader as pdr
from datetime import datetime
# 计算AO指标
def calculate_ao(data):
data['AO'] = data['Close'].rolling(window=5).mean() - data['Close'].rolling(window=34).mean()
return data
# 生成交易信号
data = calculate_ao(data)
data['Signal'] = 0
data['Position'] = 0
# 当AO值从负变正时买入
data['Signal'][data['AO'] > 0] = 1
# 当AO值从正变负时卖出
data['Signal'][data['AO'] < 0] = -1
# 计算持仓
data['Position'] = data['Signal'].diff()
# 回测策略
def backtest_strategy(data):
data['Strategy_Returns'] = data['Position'].shift(1) * data['Close'].pct_change()
data['Cumulative_Returns'] = (1 + data['Strategy_Returns']).cumprod()
return data
四、结论
发布者:股市刺客,转载请注明出处:https://www.95sca.cn/archives/105419
站内所有文章皆来自网络转载或读者投稿,请勿用于商业用途。如有侵权、不妥之处,请联系站长并出示版权证明以便删除。敬请谅解!