量化
-
Python中用PyTorch机器学习神经网络分类预测银行客户流失模型
在本文中,鉴于银行客户的某些特征,我们将预测客户在6个月后是否可能离开银行。客户离开组织的现象也称为客户流失。因此,我们的任务是根据各种客户特征预测客户流失。 $ pip inst…
-
Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析
任务/目标 本课题的数据分析对象是电力在2011-2014年的370个客户端的耗电数据,根据预测负荷可以安排发电厂发电机组的启停,降低储备容量的浪费,节约成本。 数据源准备负荷预测…
-
Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析
LSTM神经网络架构和工作原理及其在Python中的预测应用 LSTM神经网络架构和原理及其在Python中的预测应用 我将通过以下步骤: 探索性数据分析(EDA) 问题定义(我们…
-
Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析
LSTM神经网络架构和工作原理及其在Python中的预测应用 LSTM神经网络架构和原理及其在Python中的预测应用 我将通过以下步骤: 探索性数据分析(EDA) 问题定义(我们…
-
Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析
探索性数据分析(EDA) 问题定义(我们要解决什么) 变量识别(我们拥有什么数据) 单变量分析(了解数据集中的每个字段) 多元分析(了解不同领域和目标之间的相互作用) 缺失值处理 …
-
R语言中的SOM(自组织映射神经网络)对NBA球员聚类分析
导入 通过以下方式使用给定的数据(或数据样本)对SOM进行“训练”: 定义了网格的大小。 网格中的每个单元都在数据空间中分配了一个初始化向量。 例如,如果要创建22维空间的地图,则…
-
R语言神经网络模型预测多元时间序列数据可视化
多元时间序列预测的一个基本假设是,其变量相互依赖。 在本文中,我们专门针对客户的多元时间序列数据设计了神经网络框架,拟合单隐层神经网络,可能存在跳跃层连接。 查看数据 其中Y为因变…
-
sas神经网络:构建人工神经网络模型来识别垃圾邮件
现实世界中的一些业务应用示例包括图像处理,医疗诊断,金融服务和欺诈检测。此样本说明如何使用SAS®In-Memory Statistics中的NEURAL语句来构建人工神经网络模型…
-
RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测
本文将演示如何在 R 中使用 LSTM 实现时间序列预测。 简单的介绍 时间序列涉及按时间顺序收集的数据。我用 xt∈R 表示单变量数据,其中 t∈T 是观察数据时的时间索引。时间…
-
Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测
获取时间序列数据 df=pd.read_csv(“C://global.csv”) 探索数据 此表中的数据以累积的形式呈现,为了找出每天的新病例,我们需要减去这些值 df.head…
-
HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率
简介 波动性在资产定价和分配以及风险管理中起着核心作用,例如风险价值(_VaR_)与期望损失(_ES_)。对计量经济学家,统计学家和从业者来说,建模和预测波动性非常重要。然而,传统…
-
【视频】Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析|数据分享
什么是依赖关系? 假设您在观看视频时记得前一个场景,或者在阅读一本书时您知道前一章发生了什么。 传统的神经网络无法做到这一点,这是一个主要缺点。例如,假设您想对电影中每一点发生的事…