一个基于Python的个股监控程序设计方案,整合资金面、技术指标和市场情绪三大维度,使用主流金融数据接口和数据分析库实现:
—
### **系统架构设计**
“`mermaid
graph TD
A[数据源] –> B[数据采集模块]
B –> C[数据处理引擎]
C –> D[监控规则库]
D –> E[报警/推送模块]
“`
—
### **核心代码实现**
#### 1. 数据采集模块
“`python
import tushare as ts
import akshare as ak
import pandas as pd
class DataCollector:
def __init__(self, token):
self.pro = ts.pro_api(token) # Tushare Pro token
def get_fund_flow(self, symbol):
“””资金面数据”””
# 获取北向资金数据
north_bound = ak.stock_em_hsgt_hold_stock(symbol)
# 获取主力资金流向
main_fund = self.pro.moneyflow(ts_code=symbol)
return pd.merge(north_bound, main_fund, on=’trade_date’)
def get_technical_data(self, symbol):
“””技术指标数据”””
df = ak.stock_zh_a_hist(symbol, period=”daily”)
# 计算技术指标
df[‘MA5’] = df[‘close’].rolling(5).mean()
df[‘MA20’] = df[‘close’].rolling(20).mean()
df[‘RSI’] = self._calc_rsi(df[‘close’])
df[‘MACD’], df[‘Signal’] = self._calc_macd(df[‘close’])
return df
def get_market_sentiment(self, symbol):
“””市场情绪数据”””
# 从新闻API获取舆情
news = ak.stock_news_em(symbol=symbol)
# 社交媒体情绪分析
weibo_sentiment = self._analyze_weibo(symbol)
return {
‘news_sentiment’: self._sentiment_analysis(news[‘content’]),
‘social_media’: weibo_sentiment
}
def _calc_rsi(self, series, period=14):
# RSI计算实现
delta = series.diff()
gain = delta.where(delta > 0, 0)
loss = -delta.where(delta < 0, 0)
# … 具体计算逻辑
def _calc_macd(self, series):
# MACD计算实现
ema12 = series.ewm(span=12).mean()
ema26 = series.ewm(span=26).mean()
macd = ema12 – ema26
signal = macd.ewm(span=9).mean()
return macd, signal
“`
#### 2. 监控规则引擎
“`python
class MonitoringRules:
@staticmethod
def fund_flow_alert(data):
“””资金异动规则”””
if data[‘north_inflow_5d’] > 1e8 and data[‘main_net_inflow’] > 5e7:
return “主力资金持续流入”
@staticmethod
def technical_alert(data):
“””技术指标规则”””
latest = data.iloc[-1]
if latest[‘RSI’] < 30 and latest[‘close’] > latest[‘MA20’]:
return “超卖反弹信号”
if latest[‘MACD’] > latest[‘Signal’] and latest[‘volume’] > 1.5*data[‘volume’].mean():
return “量价齐升金叉”
@staticmethod
def sentiment_alert(sentiment_data):
“””市场情绪规则”””
if sentiment_data[‘news_positive’] > 0.7 and sentiment_data[‘social_heat’] > 1e4:
return “市场情绪过热”
“`
#### 3. 报警推送模块
“`python
import smtplib
from email.mime.text import MIMEText
class AlertSender:
def __init__(self, config):
self.config = config # 包含邮件服务器配置
def send_email(self, message):
msg = MIMEText(message)
msg[‘Subject’] = ‘股票监控警报’
msg[‘From’] = self.config[’email’]
msg[‘To’] = self.config[‘receiver’]
with smtplib.SMTP_SSL(self.config[‘smtp_server’], 465) as server:
server.login(self.config[’email’], self.config[‘password’])
server.send_message(msg)
“`
—
### **监控维度说明**
| 维度 | 监控指标 | 数据源 |
|————|———————–
| **资金面** | 北向资金流向、主力资金净流入 | Tushare Pro、AKShare |
| **技术面** | RSI/MACD/均线系统/成交量异动 | 本地计算 |
| **情绪面** | 新闻舆情分析、社交媒体热度 | 网络爬虫+情感分析API |
—
### **运行逻辑**
“`python
if __name__ == “__main__”:
# 初始化组件
collector = DataCollector(“your_tushare_token”)
analyzer = MonitoringRules()
sender = AlertSender(config)
# 监控标的列表
watch_list = [‘600519.SH’, ‘000001.SZ’]
for symbol in watch_list:
# 获取数据
fund_data = collector.get_fund_flow(symbol)
tech_data = collector.get_technical_data(symbol)
sentiment = collector.get_market_sentiment(symbol)
# 执行监控规则
alerts = []
alerts.append(analyzer.fund_flow_alert(fund_data))
alerts.append(analyzer.technical_alert(tech_data))
alerts.append(analyzer.sentiment_alert(sentiment))
# 发送警报
if any(alerts):
message = f”{symbol}警报:\n” + “\n”.join(filter(None, alerts))
sender.send_email(message)
“`
—
### **扩展建议**
1. **增加可视化**:使用Plotly/Dash构建监控仪表盘
2. **机器学习集成**:加入LSTM价格预测模型
3. **实时数据**:通过WebSocket接入Level2行情
4. **风险控制**:加入持仓管理和回撤监控模块
实际部署时需要处理的关键问题:
– 数据接口的频率限制
– 异常处理机制(网络中断、数据异常值)
– 敏感词过滤(舆情监控合规性)
– 策略参数的回测优化
如果需要具体某个模块的深入实现细节(如舆情分析算法),可以告诉我需要强化的部分。
发布者:股市刺客,转载请注明出处:https://www.95sca.cn/archives/920413
站内所有文章皆来自网络转载或读者投稿,请勿用于商业用途。如有侵权、不妥之处,请联系站长并出示版权证明以便删除。敬请谅解!